Вконтакте Facebook Twitter Лента RSS

Как летает птица? Приспособленность птиц к полету Скорость полета птицы зависит от ее массы.

Исследовательская работа по физике. Физические особенности полета птиц


Головина Татьяна, 17 лет. Ученица Коммунального государственного учреждения «Средняя школа №13» акимата города Усть-Каменогорска.
Педагог: Гановичева Мария Анатольевна, Коммунальное государственное учреждение «Средняя школа №13» акимата города Усть-Каменогорска.

Описание: Данное исследование будет полезно школьникам, учителям физики и биологии.
Назначение: исследование можно рекомендовать для дополнительного чтения по предметам физика и биология, кроссворды можно использовать на уроках, а также при проведении внеурочных мероприятий.
В данной работе рассматриваются особенности жизнедеятельности птиц: способность летать, сохранять энергию, ориентироваться в пространстве, справляться с перегрузками. Эти способности уникальны, каждую из них может объяснить определенный раздел физики. Понимание механизма протекания данных процессов позволяет человеку перенести знания о природе в практическую плоскость и применять их в жизни. Знание особенностей полета привело к созданию большого количества разнообразных летательных аппаратов.
Цель: объяснение механизма полета птиц.
Задачи:
Образовательные: прививать интерес к науке, чтению.
Развивающие: развивать внимание, воображение, умение анализировать.
Воспитательные: воспитание экологической культуры и понимания взаимосвязи природных явлений.


Одна из самых завораживающих особенностей птиц – способность летать. Объяснить эту способность помогут законы механики.

Изучая особенности крыла, выяснили следующее: есть внутренняя часть (запястье), которая приводиться в действие мускулами плеча и расположена приблизительно посередине крыла; и внешняя часть, которая является продолжением крыла от запястья.


Над запястьем есть группа перьев, называемая крылышком. Между ними и крылом есть свободное пространство. Это группа перьев отвечает за взлет и приземление.


Птица взлетает не только за счет мышечных усилий, которые обеспечивают взмахи крыльями вверх. Раньше считалось, что таким образом она отталкивается от воздуха. Но воздух - не плотная среда и оттолкнуться от него сложно.

Оказывается при взмахе крыльев часть перьев птицы на доли секунды разворачивается под прямым углом к телу птицы и крылу, образуя пропеллеры.


Так как у перьев на конце крыла опахало тоньше с передней стороны, то при движении пера создается закручивающая сила. Перо жесткое в основании и гибкое в конце; когда птица опускает крыло, давление воздуха на широкую стороны опахала поворачивает перо вверх, закручивая в пропеллер. Следует помнить, что крылья не прилепляются к кости крыла неподвижно, а крепятся к широкой и гибкой перепонке.

Это дает свободу каждому перу. Птица может задействовать два пера в качестве пропеллера или девять в зависимости от желаемой скорости полета.


Внутренняя часть крыла отвечает за нужный для полета угол, обеспечивающий подъемную силу. При взмахах, поворачивая перья, птица снижает давление над крылом, а давление снизу, называемое подъемным, позволяет ей взлететь. Давление на переднюю стенку крыла для успешного взлета так же должно быть меньше чем на заднюю.

После взлета внутренней части крыла нет необходимости двигаться, она сравнима с рычагом для наружней части крыла, если птица меняет ее положение, то регулирует скорость своего полета. Хвост птицы служит рулем, он поворачивается в любую необходимую сторону, при взлете же он служит дополнительной плоскостью для подьема. Кости птиц очень легкие и эта природная особенность объясняет незначительную силу тяжести, которая птица преодолевает при взлете.

При перелетах стаями, птицы умело используют средства уменьшения сопротивления воздуха.


Самая сильная птица летает впереди. Воздух обтекает ее под определенным углом. Взмахи крыльев этой птицы порождают воздушную волну, которая переносит некоторую энергию. Если летящая следом птица попадает в эту воздушную волну, ей нужно прикладывать минимум усилий для полета, так как в этой волне сопротивление воздуха минимально. Этим же можно объяснить сопровождение птицами самолетов. Они летят за самолетами для уменьшения затрат энергии на полет, увлекаемые потоками воздуха.

Взмахи крыльев птиц в летящей стае совершаются в резонанс, а если соединить концы крыльев птиц воображаемой линией, то в фиксированный момент можно наблюдать синусоиду



Морские птицы для облегчения полета используют энергию морских волн. Над гребнем морской волны возникает поднимающийся вверх воздушный поток. Птица, влетая в него, может без усилий подняться вверх, затем она начинает падать, пока не попадет в поток воздуха следующей волны. Особенно часто таким способом перемещаются альбатросы.


Многие птицы сопровождают морские суда. От работающих двигателей через трубы в воздух над кораблем идут потоки теплого воздуха, попадая в эти потоки, птицы уменьшают свои энергозатраты при полетах.

У земли конвекция помогает птицам взлетать и затем парить высоко в небе.


Воздух у земли (особенно весной и летом) прогревается сильнее и образуются восходящее воздушные потоки.
Расправив крылья, поддерживаемая этими воздушными потоками, птица без усилий поднимает вверх. Крупные птицы при подъеме используют движение по винтовой линии, что позволяет получить значительную скорость и уменьшить прикладываемые усилия, так как облегчается закручивание меховых перьев в пропеллеры.

Кроме полета законы механики птицы используют в плавании, но это уже другая история...

Почему и как летают ? Почему одни могут парить, а другие нет? Почему стая птиц может мгновенно и одновременно изменить направление полета? Человечество издавна задумывается над вопросами, касающимися полетов птиц, насекомых. На многие из них биологи могли бы дать ответ уже сегодня, если бы не одно обстоятельство - если бы воздух не был прозрачным. До сих пор при съемке полета птиц даже высокоскоростной камерой чрезвычайно трудно проследить совершенство полета с точки зрения законов аэродинамики.

Что только не придумывали для облегчения поисков ответа на возникающие вопросы! Так, американский исследователь из Южнокалифорнийского университета Джефф Спеддинг стал использовать при съемках полетов птиц мыльные пузыри, заполненные . Если такой пузырь достаточно мал, например, с булавочную головку, находящийся внутри газ заставляет его стремиться вверх. Этими пузырьками можно заполнить относительно большие емкости. В начале восьмидесятых годов Спеддинг изучал полет . Он заставлял их пролетать сквозь облако таких пузырьков, созданное в большом просторном помещении, а затем высокоскоростной камерой фотографировал оставленный ими в этом облаке след полета.

Съемка показала, что при пролете голубей воздух закручивается совсем не так, как это должно быть согласно теории аэродинамики. При съемке можно было бы использовать и дым, но пузырьки с гелием оказались лучше; за ними было легче следить. Благодаря этому Джефф Спеддинг сумел довольно точно описать, как движется крыло голубя.

Чтобы проанализировать полет птиц, исследователи по традиции полагаются на теоретические законы аэродинамики, выведенные для летательных аппаратов с неподвижным крылом. Но оказалось, что при перенесении их на действия живых существ они уже не верны. Птицы и более сложны, и более совершенны, чем любые из современных летательных аппаратов. Рассматривая птицу как модель , ученые исследуют ее в аэродинамической трубе. Создают они и особые роботы-крылья. И все это делается с целью определить, что же делает птица, когда летит, и произвести соответствующие измерения. Зачем это нужно? Чтобы помочь человеку улучшить конструкции проектируемых им летательных аппаратов и в первую очередь военных самолетов с высокой маневренностью.

Полет птиц за счет мускульной энергии - это чудо, которому люди не перестают удивляться и сегодня. Ведь чтобы поднять в воздух человека с помощью мускулов, нужны крылья размером 42,7 метра. А его грудная клетка должна иметь толщину 1,8 метра, чтобы вместить мускулы, достаточно мощные для производства взмахов.

Птицы, как, впрочем, и летательные аппараты, должны быть легкими, но мощными. Сегодня птицы могут летать, поскольку в процессе их внутренние органы и кости стали намного легче, чем у их предков рептилий. Пример ультралегкой конструкции являет собой океаническая птица фрегат: при размахе крыльев более двух метров его скелет весит менее ста двадцати граммов - вдвое меньше общего веса перьев.

Кстати, летучие мыши - превосходные летуны - также получили в результате эволюции суперлегкие кости. Потому они и висят, отдыхая, вниз головой, просто не могут встать на ноги. Их кости слишком тонки, чтобы выдержать нагрузку тела в стоячем положении. А черепа птиц вообще напоминают скорее яичную скорлупу, чем бронезащиту. Крылья же птиц, состоящие в основном из перьев, являют собой прямо-таки шедевр инженерного искусства природы: легкие и гибкие, но почти не поддающиеся разрушению.

Подъемная сила птицы создается за счет того, что воздух равномерно обтекает изогнутую поверхность крыла. А поступательное движение - за счет взмахов. Они-то и ставят в тупик многочисленных исследователей полета. Крыло - это не просто весло, которым птица «гребет» в воздухе, как полагал Леонардо да Винчи. Некоторые исследователи считают, что птица осуществляет повороты, вывернув внутреннюю часть крыла так, чтобы создать сопротивление на той стороне, куда она поворачивает, подобно действиям с портом сна на каноэ.

Сопротивление воздуха замедляет полет, а ведь от его скорости зависит иногда жизнь или смерть птицы. Американский биолог и летчик Кен Дайал обнаружил, что птицы часто осуществляют поворот за счет наклона крыла вниз, наподобие того, как отклоняются элероны у самолета. Используя рентгеновский аппарат, Дайал провел наблюдения за полетами птиц в аэродинамической трубе, благодаря чему увидел движение скелета во время полета, а также во время вдохов и выдохов птицы.

Совершая различные маневры, птицы должны координировать множество точных движений, начиная от изгибов и полного поворота крыла до изменения амплитуды взмахов. В полете им помогает центральная нервная система, управляющая . Но во многом птицы все же похожи на самый современный истребитель, обладающий высокой маневренностью и управляющийся компьютерной системой, позволяющей производить корректировку на большой высоте за доли секунд. Конечно, у птиц нет компьютера, зато есть крупный мозжечок, а, как известно, именно он участвует в координации движений животных.

Немало известно о полетах птиц и шведскому зоологу и ветеринару Ричарду Брауну. Если к крыше кабины планера прикрепить короткие нити, то при нормальном планировании они спокойно «летят» назад, но как только планер станет терять скорость, воздушные вихри поднимут нити вверх и даже могут направить их вперед - своего рода предупреждение об опасности. Точно так же, считает Браун, тысячи перьев, покрывающих крылья и тело птицы, могут работать как датчики воздушных потоков. Благодаря нервным окончаниям, птица сразу же чувствует движение перьев. Мускулы, на которых расположены перья, в основном действуют как пассивные датчики информации для нервной системы и в меньшей степени как движители. Чувствительные элементы на крыльях и определяют начало турбулентности (вихревого движения при активном перемешивании слоев воздуха) в обтекающем потоке, заставляя птицу изменить темп движения крыльев или несколько опустить их вниз.

Очень важны для птиц и акробатические способности. Ласточки, например, проводящие в воздухе до восьми часов в день, то и дело взмывают высоко в небо и бросаются вниз в погоне за насекомыми. А вот малиновки находятся днем в воздухе всего лишь несколько минут, совершая короткие перелеты, длящиеся обычно несколько секунд. Большая часть их полетов приходится на взлеты и посадки - самые утомительные моменты любого полета. Поэтому многие крупные птицы стараются делать их как можно реже. Грифы, соколы, альбатросы и другие крупные птицы почти все время проводят в парящем полете на воздушных течениях с распростертыми и почти неподвижными крыльями.

Для большей эффективности полета птицы искусно используют характерные особенности своих перьев. Например, грифы, совершая медленный полет по кругу, чтобы не потерять высоту, выпрямляют длинные, жесткие перья на концах крыльев и разворачивают их веером так, чтобы между ними образовались щели, препятствующие перемешиванию воздуха в потоке за птицей. В результате сопротивление снижается, а подъемная сила возрастает.

Сокол же, наоборот, пикируя на добычу, укладывает свои перья так, чтобы сократить площадь их поверхности. Ему нужна скорость, а не подъемная сила. Построить диаграмму полета птицы, пикирующей со скоростью 320 километров в час, непросто, и обычно скорость пикирования определяется приблизительно. Но специалисты надеются, что однажды им удастся вывести формулу построения диаграммы полета, применяемую к птицам любых размеров и форм.

А как летают насекомые? Мелкие осы и жуки, например, как бы гребут крыльями по воздуху, сопротивление которого им только помогает. Они ощущают воздух как что-то вязкое, наподобие сиропа. Им не нужна большая подъемная сила, и если они вдруг прекратили бы свое движение, то стали падать на землю не быстрее, чем комок пыли. Они «плывут» по воздуху, используя свои крылья, покрытые ворсинками, для создания большего сопротивления. При обратном движении крыла ворсинки моментально складываются. Происходит нечто подобное тому, как снижается сопротивление у весла, вынимаемого из воды. Кстати, крупным насекомым летать труднее.

Английский зоолог Чарлз Эллингтон из Кембриджского университета, интересующийся шмелями, в одной из своих работ писал, что по законам аэродинамики шмели летать не должны. Но они летают! Крылья шмелей и других крупных насекомых создают подъемную силу гораздо большую, чем определяет теория аэродинамики. Как это им удается? Теперь, кажется, ответ на этот вопрос получен. Это произошло при изучении полета крупных флоридских бражников (ночных ), имеющих размах крыльев более десяти сантиметров. Когда такой бражник пролетает сквозь дым, который, кстати сказать, его совсем не беспокоит, можно видеть, как воздух вихрями закручивается от его тела к концам крыльев вместо того, чтобы согласно теории аэродинамики плавно обтекать крылья по направлению от их передней кромки к задней. Была построена большая механическая модель бражника (из ткани и меди) с двигающимися крыльями. И робот-бражник тоже создавал вихри, направленные в разные стороны.

Сегодня биологи уже вплотную приблизились к решению загадок: как насекомые и мелкие птицы создают такую большую подъемную силу при малом запасе энергии, как и почему они летают.

Человек всегда завидовал птицам. Как же, ведь они летают, а он не может! Двигатель развития летательного аппарата птиц - добывание пищи. Ну, а как же нелетающие птицы, например, страусы? Эти - исключение из правил. У людей вопрос с решен давно, и теперь, приблизившись к разгадке полета, узнав, насколько нелегко он дается птицам, может быть, не стоит им завидовать?

P. S. О чем еще думают британские ученные: о том, что исследования механики полета птиц могут быть очень перспективными в том числе и с коммерческой точки зрения. Ведь если какому-нибудь ученому вдруг удастся разгадать тайну птичьего полета и чего доброго смастерить настоящие крылья, как мифический Дедал смастерил их для себя и своего сына Икара, думаю, такой ученый вмиг стал бы миллионером. Позже появились бы книги об истории его успеха, а еще позже книги по бизнесу (как на сайте /biznes_literatura/buhgalterija__nalogi__audit/) о роли инноваций в бизнес планировании и крылья из средства безграничного полета превратились бы в бухгалтерскую категорию.

При изучении темы «Класс Птицы» ребята впервые знакомятся с таким важным понятием, как теплокровность . Очень важно, чтобы ученики поняли, что поддержание постоянной температуры тела обеспечивается взаимодействием целого ряда физиологических систем организма. Хорошее знание этого материала необходимо для объяснения сложных эволюционных и экологических проблем.

Учитель.

– Ребята, почему зимой в лесу птиц меньше, чем летом?
(Предполагаемые ответы: мало корма или его совсем нет (для насекомоядных птиц ), много снега, холодно. )
– А может перьевой покров защитить птиц зимой от мороза? (Может, но только частично .)
Основные вопросы, на которые мы должны ответить в ходе сегодняшнего урока: что согревает тело птицы? Как они поддерживают постоянную температуру? Откуда берут энергию для полета?
– Как вообще образуется тепло? (Предполагаемые ответы: при сгорании органических веществ, которое происходит в присутствии кислорода. )
– А за счет чего едет автомобиль? За счет чего двигаются организмы? (За счет энергии, также образующейся при сгорании (окислении ) органических веществ при участии кислорода. )
Сколько энергии требуется птицам? Ведь они могут пролетать большие расстояния, развивать высокую скорость. (Работа с таблицами.)

Таблица 1. Расстояния, преодолеваемые при перелетах
Таблица 2. Площадь поверхности крыльев и нагрузка на них

Для сравнения – модель планера имеет нагрузку на крылья 2,5 кг/м2.

Таблица 3. Частота взмахов крыльями
Таблица 4. Максимальная скорость полета

Чем меньше птица, тем больше пищи на каждый грамм массы тела ей требуется. С уменьшением размера животного его масса убывает быстрее, чем площадь поверхности тела, через которую происходит потеря тепла. Поэтому мелкие животные теряют больше тепла, чем крупные. Мелкие птицы за день съедают количество корма, равняющееся 20–30% их собственной массы, крупные – 2–5%. Синица может за день съесть столько же насекомых, сколько весит сама, а крохотный колибри – выпить количество нектара, в 4–6 раз превышающее собственную массу.

Повторяя этапы расщепления пищи и особенности дыхательной системы птиц, заполняем поэтапно схему № 1.

Ход работы при заполнении схемы

Интенсивная двигательная активность птиц требует больших затрат энергии. В связи с этим их пищеварительная система имеет ряд особенностей, направленных на эффективную переработку пищи. Органом захватывания и удерживания пищи служит клюв. Пищевод длинный, у большинства птиц он имеет карманообразное расширение – зоб, где пища размягчается под влиянием жидкости зоба. Железистый желудок имеет в своей стенке железы, выделяющие желудочный сок.
Мускулистый желудок снабжен сильной мускулатурой и выстлан изнутри прочной кутикулой. В нем происходит механическое перетирание пищи. Пищеварительные железы (печень, поджелудочная железа) активно выделяют пищеварительные ферменты в полость кишечника. Расщепленные питательные вещества всасываются в кровь и разносятся ко всем клеткам тела птицы.
Как долго переваривается пища у птиц? Мелкие совы (домовые сычи) переваривают мышь за 4 ч, серый сорокопут – за 3 ч. Сочные ягоды у воробьиных проходят через кишечник за 8–10 мин. Насекомоядные птицы наполняют свой желудок 5–6 раз в сутки, зерноядные – трижды.
Однако само по себе поглощение пищи и поступление в кровь питательных веществ – это еще не выделение энергии. Питательные вещества нужно «сжечь» в клетках тканей. Какая система принимает в этом участие? (Легкие, воздушные мешки. )
– Мышцы должны хорошо снабжаться кислородом. Однако птицы не могут обеспечить доставку нужного количества кислорода за счет большого количества крови. Почему? (Увеличение количества крови увеличивало бы массу птицы и затрудняло бы полет. )
Интенсивное поступление кислорода к клеткам тканей у птиц происходит за счет «двойного дыхания»: богатый кислородом воздух проходит через легкие и при вдохе, и при выдохе, причем в одном и том же направлении. Это обеспечивается системой воздушных мешков, пронизывающих тело птицы.
Для того чтобы кровь двигалась быстрее, необходимо повышенное артериальное давление. Действительно, птицы – гипертоники. Для того чтобы создать высокое артериальное давление, сердце птиц должно сокращаться с большой силой и высокой частотой (табл. 5).

Таблица 5. Масса сердца и частота сердечных сокращений

В результате окисления (сгорания) питательных веществ образуется энергия. На что она тратится? (Завершаем заполнение схемы № 1).

Вывод. Активный окислительный процесс способствует поддержанию постоянной температуры тела.
Высокая температура тела обеспечивает высокий уровень обмена веществ, быстрое сокращение сердечной мышцы и скелетных мышц, что необходимо для полета. Высокая температура тела позволяет птицам сократить период развития зародыша в насиживаемом яйце. Ведь насиживание – важный и опасный период в жизни птиц.
Но постоянная температура тела имеет свои недостатки. Какие? Заполняем схему № 2.

Итак, поддержание постоянно высокой температуры тела выгодно для организма. Но для этого необходимо потреблять много пищи, которую надо где-то раздобыть. Птицам пришлось развивать различные приспособления и черты поведения, позволяющие добывать достаточное количество пропитания. Вот несколько примеров.
Далее учащиеся делают сообщения на тему «Как разные птицы добывают себе корм» (их подготовка могла быть домашним заданием к данному уроку).

Пеликаны-рыболовы

Пеликаны иногда ловят рыбу сообща. Найдут мелководный залив, оцепят его полукругом и принимаются хлопать по воде крыльями и клювами, постепенно сужая дугу и приближаясь к берегу. И только согнав рыб к берегу, начинают лов.

Совиная охота

Как известно, совы охотятся ночью. Глаза у этих птиц огромные, с сильно расширяющимся зрачком. Через такой зрачок и при скудном освещении попадает достаточно света. Однако увидеть добычу – различных мелких грызунов, мышей и полевок – издалека в темноте невозможно. Поэтому сова летает низко над землей и смотрит не по сторонам, а прямо вниз. Но если летать низко, шелест крыльев распугает добычу! Поэтому сова имеет мягкое и рыхлое оперение, которое делает ее полет совершенно бесшумным. Однако основным средством ориентации у ночных сов служит не зрение, а слух. С его помощью сова по писку и шороху узнает о присутствии грызунов и точно определяет место нахождения добычи.

Вооружившись камнем

В Африке, в заповеднике Серенгети, биологи наблюдали, как добывали себе пищу стервятники. На этот раз пищей были яйца страуса. Чтобы добраться до лакомства, птица брала клювом камень и с силой бросала его на яйцо. Крепкая скорлупа, выдерживающая удары клюва даже таких больших птиц, как грифы, от камня трескалась, и яйцом можно было полакомиться.
Правда, тут же стервятника оттесняли от пиршества грифы, а тот принимался за новое яйцо. Это интереснейшее поведение потом неоднократно отмечали в эксперименте. Стервятникам подбрасывали яйца и ожидали, что произойдет. Заметив лакомство, птица тут же подбирала подходящий камень, иногда весом до 300 г. Стервятник тащил его в своем клюве за десятки метров и бросал на яйцо до тех пор, пока оно не трескалось.
Однажды стервятнику положили поддельные куриные яйца. Он взял одно из них и начал бросать его о землю. Затем отнес яйцо к большой скале и швырнул об нее! Когда и это не принесло желаемого результата, стервятник принялся отчаянно колотить одно яйцо о другое.
Многочисленные наблюдения показали, что птицы старались расколоть камнями любой предмет яйцевидной формы, даже если он был огромного размера или окрашен в необычные цвета – зеленый или красный. А вот на белый куб они совершенно не обращали внимания. Ученые выяснили, кроме того, что молодые стервятники не умеют разбивать яйца и учатся этому у старших птиц.

Скопа-рыболов

Птица скопа – прекрасный рыболов. Увидев рыбу, она стремительно бросается в воду и вонзает в тело жертвы свои длинные острые когти. И как ни пытается рыба вырваться из когтей хищницы, это ей почти никогда не удается. Некоторые наблюдатели отмечают, что пойманную рыбу птица держит головой по направлению полета. Может быть, это случайность, но вероятнее, что скопа старается так ловить рыбу, чтобы потом ее легче было нести. Ведь в таком случае сопротивление воздуха бывает меньше.

Вывод по сообщениям учащихся – прогрессивное развитие головного мозга и ведущих органов чувств (зрения, слуха) связано с интенсивным обменом веществ, высокой подвижностью и сложными взаимоотношениями с условиями среды обитания.
А теперь объясните, почему птицы получили распространение во всех климатических зонах. С чем связаны перелеты птиц? (Теплокровность позволяет птицам не бояться морозов, оставаться активными даже при очень низких температурах окружающей среды. Однако недостаток корма в зимнее время вынуждает их мигрировать в более кормные места. )

Завоевавшие воздух

Скорость, дальность, высота полета птиц

Относительно скорости полета птиц исследователи придерживаются различных мнений. На нее очень сильно влияют атмосферные явления, поэтому при дальних перемещениях птицы то летят быстрее, то медленнее, то делают длительные перерывы для отдыха.

Выпустив птицу в каком-то месте, очень трудно сказать, когда она прилетит в «пункт назначения», ведь она может лететь далеко не все время своего отсутствия.

Скорость, вычисленная путем простого деления расстояния на время перелета птицы, часто бывает заниженной. В особенно «ответственные» моменты — преследуя добычу или спасаясь от опасности — птицы могут развивать и очень большие скорости, но, конечно, долго их не выдерживают.

Крупные соколы во время ставки — преследования птицы в воздухе — достигают скоростей в 280-360 км/ч. Обычные, «повседневные» скорости птиц средней величины гораздо меньше — 50-90 км/ч.

Все сказанное выше касалось машущего полета.

Скорость скользящего полета также трудно поддается измерению. Считают, что чеглок планирует со скоростью 150 км/ч, бородач-ягнятник — 140, а гриф — даже 250 км/ч.

Дальность беспосадочных перелетов птиц обсуждается уже давно. Так же как и скорость, ее очень трудно измерить. Сокол, выпущенный под Парижем, через день был обнаружен на острове Мальта за 1400 км. Задерживался он в пути или летел все время, неизвестно.

Вообще птицы останавливаются в пути довольно часто, и отрезки беспосадочных перелетов у них невелики. Этого нельзя сказать о перелетах через водные преграды, где птицам негде сесть. Рекорд на дальность беспосадочного перелета принадлежит куликам — бурокрылым ржанкам, ежегодно пролетающим над океаном с Аляски на Гавайи и обратно 3000 км.

Птицы перелетают без посадки через Мексиканский залив (1300 км), Средиземное море (600-750 км), Северное море (600 км), Черное море (300 км). Значит, средняя дальность беспосадочного перелета птиц составляет около 1000 км.

Как правило, высота полета птиц не достигает 1000 м.

Но отдельные крупные хищники, гуси, утки могут подниматься и на значительно большие высоты.

Скорость полета птиц и насекомых (км/ч)

В сентябре 1973 г. африканский гриф столкнулся с гражданским самолетом на высоте 12 150 м над Берегом Слоновой Кости. Гриф вывел из строя один из моторов, но самолет благополучно приземлился. Это, видимо, абсолютный рекорд высоты полета птиц. До этого бородач был отмечен в Гималаях на высоте 7900 м, пролетные гуси там же на высоте 9500 м, кряква столкнулась с самолетом над Невадой на высоте 6900 м.

Скорость птиц

Самая быстрая птица

Самая быстрая в мире птица, не считая вымерших птеродактилей – это сапсан (Fаlсо peregrinus). На коротких участках во время охоты он способен развивать скорость до 200км/ч. Подавляющее же большинство пернатых не в состоянии передвигаться быстрее 90 км/ч.

Это вовсе не значит, что они не способны на другие рекорды. Так, например, черный стриж (Apus apus) может находиться в воздухе 2-4 года. В течение всего этого времени он спит, пьет, ест и даже спаривается на лету. Молодой стриж, вставший на крыло, пролетает около 500 000 км прежде, чем впервые приземлиться.

Чёрный стриж обладает рядом рекордов из мира птиц.

Птица может находиться в воздухе без остановок 2-4 года, всё это время она есть, пьет и спаривается, за это время может пролететь 500 000 км. У чёрного и иглохвостого стрижа самая большая горизонтальная скорость полёта, она достигает 120-180 км/ч. Полет у иглохвостого стрижа настолько стремительный, что, помимо негромкого крика, наблюдателю слышно также своеобразное гудение - это звук разрезаемого птицей воздуха.

На отдельных участках полета иглохвостый стриж может развивать скорость до 300 км/ч.

Самой медленно летающей птицей считается вальдшнеп. Во время брачных игр, эта маленькая бурая птичка, именуемая в словаре Даля не иначе как «крехтун», способна удержаться в воздухе на скорости 8 км/ч.

Африканский страус вообще не способен к полету, зато он бегает так, что позавидовали бы многие летуны.

В случае опасности он способен разогнаться до 72км/ч.

Птицу, способную совершать не просто длительные перелёты, но делать это невероятно быстро, обнаружили шведские орнитологи.

По их мнению, такую выносливость можно сравнить разве что с самолётной. Держать скорость, близкую к 100 км/ч на протяжении более чем 6500 километров, - не шутка.

Биологи из университета Лунда закрепили в мае на спинах 10 самцов дупелей (Gallinago media) специальные геолокаторы весом всего 1,1 грамма.

Год спустя они выловили троих из них и извлекли собранные данные. Так выяснилось, что птицы путешествуют из Швеции в Центральную Африку и обратно.

Одна из особей пролетела за три с половиной дня 6800 километров, вторая 6170 км за три дня и, наконец, последняя преодолела 4620 км за два дня.

При этом ветер птицам не помогал. Биологи проанализировали данные со спутников и выяснили, что попутных ветров на пути перелёта дупелей не было.

Удивительно, что дупели не делают на своём пути остановки, ведь их перелёт большей частью лежит над сушей. Обычно наземные птицы садятся, чтобы отдохнуть и пополнить свои энергетические запасы (на поверхности в достатке дождевых червей, насекомых и прочих беспозвоночных).

Птица может летать, если масса ее тела не более 20кг.

Некоторые птицы перед полетом разбегаются, например дрофы и куры.

Например, в Индии при определении скорости полета стрижа получилось сто семьдесят миль в час, в Месопотамии - сто миль в час. Скорость полета европейского сокола была измерена секундомером в момент пикирования, и результат - от ста шестидесяти пяти до ста восьмидесяти миль в час.
Но большинство ученых ставят эти цифры под сомнение. Один эксперт считает, что рекордсменом среди птиц является почтовый голубь, и он не может развивать скорость свыше 94,2 мили в час.

Вот несколько общепризнанных цифр относительно скорости полета птиц. Сокол может летать со скоростью от шестидесяти пяти до семидесяти пяти миль в час.

Скорость перелета птиц

Немного уступают ему в скорости утки и гуси, которые могут набрать скорость шестьдесят пять - семьдесят миль в час.

Скорость полета европейского стрижа достигает шестидесяти - шестидесяти пяти миль в час, примерно такая же у золотой ржанки и траурного голубя. Колибри, которые считаются очень быстрыми птицами, набирают до пятидесяти пяти - шестидесяти миль в час.

Скорость полета скворца - сорок пять - пятьдесят миль в час. Воробьи обычно летают со скоростью двадцать пять миль в час, хотя могут и быстрее: сорок пять - пятьдесят миль в час.
Вороны обычно летают со скоростью двадцать - тридцать миль в час, хотя могут развивать сорок - пятьдесят миль в час.

Скорость полета цапли - тридцать пять - сорок миль в час, фазана - тридцать пять - сорок миль в час. И, как это ни странно, дикий индюк может делать тридцать - тридцать пять миль в час. Скорость голубиной сойки - двадцать - тридцать пять, миль в час.

Скорость перелета

Едва ли по какому-нибудь вопросу, связанному с перелетами птиц, распространены столь ошибочные взгляды, как по вопросу о скорости перелета. Мнения большинства людей о скорости, с которой пролетают птицы, основаны на случайных кратковременных наблюдениях, и поэтому она обычно сильно преувеличена.

Другие сравнивают скорость пролета птиц со скоростью автомобиля, поезда или самолета. Однако таких скоростей они не найдут даже у наиболее быстрых из известных нам летунов. Так, например, стрижи пролетают со скоростью 40-50 м/сек (независимо от ветра), что соответствует приблизительно 150-160 км/час. (Сравните: максимальная скорость экспресса — 39 м/сек, или 140 км/час.) Это, конечно, не означает, что птицы вообще не умеют летать быстрее.

Гоняющиеся друг за другом стрижи развивают скорость до 200 км/час, а сокол бросается на жертву со скоростью 70 м/сек, т. е. 250 км/час. Но эти предельные скорости в течение очень короткого времени являются исключениями: они в лучшем случае характеризуют способность к полету некоторых видов, но их нельзя использовать для оценки скорости полета при миграциях, когда необходимо длительное напряжение.

При длительных миграциях имеют значение не только способность к полету, но также и ветер.

В зависимости от его направления и силы скорость птиц может значительно уменьшаться или увеличиваться. Особенно большие скорости в полете можно объяснить только при учете поддержки со стороны ветра. Так, в приведенном выше примере скорость английских чибисов при полете через Атлантический океан, равная приблизительно 70 км/час, увеличилась до 150 км/час благодаря попутному ветру, скорость которого достигала 90 км/час. Учитывая задерживающее или ускоряющее влияние ветра, можно точно измерить собственную скорость птиц на коротких расстояниях и в соответствии с этим вычислить истинную скорость пролета.

Впервые такие расчеты произвел Тинеман на Курской косе. Впоследствии они были сделаны Мейнертцхагеном, Гаррисоном и др

Цифры, приведенные в таблице, дают ясное представление о предельных скоростях перелета птиц.

В общем она, очевидно, равна 40-80 км/час, причем скорость мелких певчих птиц приближается к низшим цифрам. Птицы, совершающие перелет ночью, летят, по-видимому, быстрее, чем мигрирующие днем. Бросается в глаза малая скорость миграции хищных и других крупных птиц. Одни и те же виды птиц летают в области гнездования обычно значительно медленнее, чем на пролете, если вообще эти скорости можно сравнивать.

Как ни мала обычно скорость перелета птиц, вернее какой малой она нам ни кажется, она вполне достаточна для того, чтобы некоторые виды за несколько дней и ночей достигли мест зимовок. Больше того, с такой скоростью при условии попутного ветра (как, например, при перелете чибисами океана) многие перелетные птицы в течение нескольких дней или ночей могли бы долететь в тропики.

Однако птицы не могут сохранить указанную скорость пролета дольше, чем на несколько часов; они почти никогда не летят несколько дней или ночей подряд; как правило, их полет прерывается для короткого отдыха или для более длительных остановок; последние придают перелету в целом характер неторопливой «прогулки». Так возникают длительные миграции.

При рассмотрении точно установленных кольцеванием средних скоростей дневного или ночного перелета отдельных видов всегда нужно иметь в виду, что они не характеризуют способность к полету и развиваемую на пролете скорость, а указывают лишь на длительность пролета и расстояние между местами кольцевания и находок окольцованных птиц в пересчете на один день.

Многочисленные находки окольцованных птиц доказывают, что птицы быстро пролетают большую часть пути, а остальное время используют для отдыха в богатых кормом местах. Этот вид пролета встречается наиболее часто.

Значительно реже наблюдается равномерное распределение нагрузки и отдыха.

У птиц, летящих на большое расстояние, средний дневной путь равен примерно 150-200 км, в то время как летящие не так далеко не покрывают за это же время и 100 км.

С этими данными согласуется продолжительность перелета в 2-3 или 3-4 мес. многих видов, которые зимуют в Тропической и Южной Африке. Так, например, аист, обычно отлетающий из Германии в конце августа, достигает зимовок в Южной Африке только в конце ноября или в декабре. Эти же сроки относятся и к жулану. Ласточки мигрируют быстрее — с сентября до начала ноября.

Сколь, однако, велики в данном случае индивидуальные различия, можно видеть на примере 3 окольцованных горихвосток-лысушек, одна из которых покрывала ежедневно 167 км, другая — 61 км и третья — лишь 44 км, причем эти числа уменьшаются по мере увеличения отрезка времени, для которого их вычисляют (6, 30 и 47 дней). Основываясь на этих результатах, можно сделать вывод, что дневная скорость более всего соответствует истинной скорости перелета в том случае, когда она вычисляется на основе общих показателей за короткий срок.

Этот вывод лучше всего доказывают следующие примеры скорости пролетов отдельных птиц: аист покрыл за 2 дня 610 км, славка-черноголовка за 10 дней — 2200 км, лысуха за 7 дней — 1300 км, другая лысуха за 2 дня — 525 км, кряква за 5 дней — 1600 км. Этим данным можно противопоставить дневную скорость певчего дрозда — 40 км (вычислена за 56 дней перелета), зяблика — 17,4 км (вычислена за 23 дня перелета) и ястреба-перепелятника — 12,5 км (вычислена за 30 дней перелета).

Скорость птиц

Эти данные сравнимы с приведенными выше сведениями о горихвостках, на средние скорости которых при увеличении продолжительности пролета сильно влияют длительные остановки для отдыха.

При оценке дневного пути и скорости пролета нельзя упускать из виду и другой важный фактор: любые цифровые данные можно вычислить только для идеального пути перелета, т. е. для прямой линии, соединяющей места кольцевания и находки окольцованной птицы.

В действительности пролетный путь всегда больше, отклонения от прямой часто весьма значительны и выполненная работа и скорость значительно выше вычисленных. Эти ошибки практически невозможно исключить, и поэтому их необходимо учитывать, особенно при очень длительных перелетах.

Кроме того, следует обращать внимание и на то, когда были получены эти данные.

Дело в том, что при весеннем перелете показатели во многих случаях значительно выше, чем при осеннем. В единичных случаях можно было бы с уверенностью доказать, что весенний перелет проходит вдвое быстрее осеннего, например у аиста, американского веретенника и жулана.

Штреземан (1944) точно установил, что весной пролет жулана длится приблизительно 60 дней, а осенью — около 100 дней. В среднем эти птицы пролетают около 200 км в сутки. Однако они летят только ночью в течение 10 час.

со скоростью 50 км/час. После такого пролета они всегда отдыхают, так что расстояние 1000 км покрывается ими за 5 суток: миграция — 2 ночи, сон — 3 ночи, кормежка — 5 дней.

Еще несколько слов о максимальных скоростях и длительности пролета, характеризующих возможности перелетных птиц: камнешарка, небольшая прибрежная птица, окольцованная на Гельголанде, была найдена через 25 час.

в Северной Франции, на 820 км южнее. Многочисленные мелкие певчие птицы регулярно перелетают за 12-15 час. Мексиканский залив шириной 750-1000 км. Согласно Моро (1938), некоторые небольшие сокола (Falco concolor и F. amurensis), а также азиатские щурки (Merops persicus и М.

apiaster), зимующие на побережье Южной Африки, также пролетают не меньше 3000 км над морем. Гавайские острова служат местом, зимовки для ряда северных куликов, которые, мигрируя от Алеутских островов и Аляски, где расположены их гнездовья, вынуждены пролетать 3300 км над открытым.

морем. Золотистой ржанке, особенно сильному летуну, для покрытия этого расстояния при скорости около 90 км/час потребовалось бы приблизительно 35 час.

Более высокие скорости отмечены у другого вида ржанок, пролетающих от Новой Шотландии до северной оконечности Южной Америки 3600 км над морем. Почти невероятным кажется пролет одного из гнездящихся в Японии бекасов, который зимует в Восточной Австралии и должен покрыть почти 5000 км, чтобы достигнуть зимовок.

В пути он, вероятно, совсем не отдыхает, так как в других местах его никогда не отмечали.

К пролету над водными пространствами можно приравнять пролет над большими пустынями. Такой пролег также, несомненно, проходит без перерыва, например пролет над Западной Сахарой мелких певчих птиц, трясогузок и коньков, требующий 30-40 час. непрерывной работы, если скорость их пролета считать равной приблизительно 50 км/час.

Найшвидший птах у світі живе на Закарпатті

Науковці кажуть, що за швидкістю йому нема рівних не тільки серед птахів, а й усіх звірів.

«Сапсан здатний розвивати швидкість до 300 км/год, — розповідає орнітолог Віктор Палінчак .

— Його вважають найшвидшим не тільки серед птахів, а й взагалі серед представників тваринного світу. Розмах його крил сягає близько півтора метра, хоча довжина тіла не перевищує 50 см. Як і в більшості хижих птахів, самки сапсанів є значно більшими за самців: важать близько 900 - 1500 г, тоді як самці менші за розміром і важать 450-800 г».

Сокіл-сапсан охороняється державою і занесений до Червоної книги України.

Скорость перелетных птиц

На Закарпатті, за словами орнітолога, його можна зустріти високо в горах. Тут птахи гніздяться і полюють. «Для гніздування сапсани обирають малодоступні для людей місця з відкритим для огляду простором, — каже пан Віктор.

— Найчастіше зустрічаються в долинах гірських річок, тут для них найкращі умови для проживання. Крім того, сапсан уникає як ділянок із суцільними хащами, так і безлісих просторів. Не рідко сапсан займає уже обжиті гнізда інших птахів, зокрема ворон, граків. Власні ж домівки будують аби-як: з декількох гілочок та пір’я. Якщо ж гніздо збудоване добре, то там можуть проживати і декілька поколінь (що трапляється досить рідко).

Майже кожна пара має «у власності» по 2-3 гнізда, які служать їм запасними у разі руйнування основного».

«Лебедина вірність» притаманна і сапсанам. Все життя птахи проживають з однією парою. «Шлюбні ігри цих хижаків досить цікаві, — каже науковець. — Під час залицяння птахи здійснюють акробатичні трюки у польоті, граються зі здобиччю».

Сапсани - це хижі птахи, тому від них часто потерпають голуби, качки, горобці, дрозди, ластівки, інколи - лісові звірі: зайці, білки.

Полюють переважно вночі. «Під час полювання птахи займають положення у височині (на дереві, скалі або літають в небі). Помітивши здобич, сапсани стрілою летять до неї, знешкоджують їх за допомогою сильних крил або гострих пазурів. Як правило достатньо одного удару і жертва не виживає».

Крім того, що сапсани найшвидші, вони ще володіють найкращим зором.

Птахи легко фокусуються на жертві, навіть, якщо вона знаходиться на великій відстані. «Це можливо завдяки тому, що кришталик оточений спеціальним кільцем з кісткової пластинки, яка стискається потужними м’язами змінюючи кривизну кришталика.

До того ж око сапсана володіє двома «жовтими плямами», завдяки другій плямі птах може збільшувати предмети, які знаходяться на великій відстані (щось типу бінокля)».

За словами науковців, популяція сапсанів тепер почала відроджуватися.

Зниження спостерігалося у минулому столітті, коли у моду пішла обробка полів пестицидами. «Сапсани досить важко переносили цю отруту. Від цього вони масово гинули, а самки не могли висидіти яйця з пташенятами. А тепер кількість птахів суттєво збільшилася, їх гнізда можна побачити навіть у великих містах».

Ольга Білей, Зелене Закарпаття

07.08.2013 14:38:49

Сокол-сапсан — это сильная и быстрая птица, которая не имеет себе равных среди хищников. Сапсана издавна использовали в соколиной охоте.

Регион распространения сокола значительный: он живёт во всей Европе, как на скалистых побережьях, так и в негостеприимных горных районах. Доклад о птице с видео и фото

Отряд — Хищные птицы

Семейство — Соколиные

Род/Вид — Falco peregrinus

Основные данные:

РАЗМЕРЫ

Длина: 40-50 см.

Размах крыльев: 92-110 см.

Масса: самец 600-750 г, самка 900-1300 г.

РАЗМНОЖЕНИЕ

Половое созревание: с 3 лет.

Период гнездования: март-май, зависит от региона.

Кладка: раз в год.

Величина кладки: 2-4 яйца.

Высиживание: 30-35 дней.

Выкармливание птенцов: 35-42 дня.

ОБРАЗ ЖИЗНИ

Привычки: сапсаны держатся парами.

Пища: в основном другие птицы.

Продолжительность жизни: до 20 лет.

РОДСТВЕННЫЕ ВИДЫ

Подвиды отличаются размерами.

Крупнейшие подвиды сокола сапсана живут в Арктике, наименьшие — в пустынях.

Охота сокола сапсана. Видео (00:02:03)

Соколиная охота

Сокол сапсан (смотри фото) относится к самым ловким охотникам среди птиц. По этой причине его издавна преследовали сокольничие, которые опустошали гнёзда сапсана.

В результате резко снизилась численность его популяции.

ГДЕ ОБИТАЕТ

Любимое место охоты сокола-сапсана — открытые территории, например, торфяники, степи и полупустыни.

В Центральной Европе сапсан населяет главным образом гористые районы. Он устраивает гнёзда на отвесных скальных стенах в долинах рек или в старых каменоломнях. В зимнее время сапсан селится вблизи крупных водоёмов, где охотится на птиц, которые там обитают — чаек. Видовое название сокола сапсана в переводе с латыни означает «странник» или «пилигрим». Сапсана также можно увидеть во время его путешествия в места зимовки и обратно, вблизи озёр и устьев год.

В Центральной Европе перелётными являются только молодые сапсаны, старые же — оседлые. Птицы из северных районов мигрируют на большие расстояния.

САПСАН И ЧЕЛОВЕК

Пернатые хищники, такие как сапсан, являются вершиной пищевой цепочки.

Было доказано, что по цепи питания (насекомые — мелкие птицы — пернатые хищники) токсичные компоненты ДДТ и другие пестициды накапливались в организме сапсана, поражая его систему размножения (падала доля оплодотворённых яиц) и кальциевый обмен (скорлупа яиц делалась тоньше и трескалась).

Это вызвало сокращение численности сапсана. Меры, принятые в 60-70 годы прошлого столетия по сохранению хищных птиц и запрет использования ДДТ положительно повлияли на его популяции.

Сапсана издавна приручали для использования как охотничью птицу в соколиной охоте. Не всех птиц семейства соколиных можно научить охоте на определённые виды животных.

Например, пустельга получила своё название ещё тогда, когда соколиных оценивали только по тому, годятся ли они для охоты.

РАЗМНОЖЕНИЕ

Соколы-сапсаны создают пары на всю жизнь.

Как правило, гнездятся они на труднодоступных скальных выступах или скальных карнизах. Гнездо довольно просторное, в нём помещаются родители и птенцы, оно надёжно защищено от хищников.

Скорость полёта некоторых животных, км/ч

Эти соколы гнезда не вьют, на земле они откладывают яйца в неглубокие выцарапанные когтями ямки, на деревьях же занимают гнезда других птиц. Самки начинают откладывать яйца уже в конце марта. Чаще всего откладывают 2-4 красно-коричневых яиц с красными точками.

Высиживание начинается только тогда, когда снесены все яйца. О птенцах заботятся оба родителя.

ЕДА И ОХОТА

Сапсан питается в основном птицами.

Зимой эти пернатые населяют территории вокруг устьев рек и охотятся главным образом на чаек и уток. Большинство жертв сапсан ловит в воздухе. Заметив жертву, он делает резкое ускорение и в ныряющем полёте бросается на добычу, хватает её за шею, сминая шейные позвонки. С небольшой добычей он летит в гнездо, а крупных птиц убивает в воздухе и опускает на землю. Сапсан съедает в день около 100 г корма.

В период воспитания и кормления птенцов его потребности растут. Охотничья территория сокола колеблется от 40 до 200 км2.

Сапсаны очень редко охотятся на млекопитающих, однако, их жертвами иногда становятся даже кролики.

НАБЛЮДЕНИЯ ЗА САПСАНОМ

Лучшее время для наблюдения за сапсаном — это период гнездования.

В это время птицы не улетают далеко от гнезда. Соколы кружат высоко в небе, то быстро размахивая крыльями, то паря в плавном полёте. По своим размерам сапсаны несколько крупнее домашних голубей. Эту птицу легко отличить в полёте по сильному телу, длинным заострённым крыльям и относительно короткому хвосту.

В другое время сапсанов можно наблюдать возле устьев рек или возле других крупных водоёмов, где они охотятся на уток и других птиц. Определённым признаком присутствия сапсана являются тревожные голоса и стремительные, неожиданные взлёты напуганных этим соколом птиц.

ОБЩАЯ ИНФОРМАЦИЯ


Воспетый в украинских и российских песнях настоящий сокол, которого часто ещё называют «сапсаном», обитает во многих районах земного шара.

Его можно встретить от заполярных утёсов Скандинавии и Таймыра на севере до фьордов Огненной Земли на юге. Соколы обустраивают гнезда на карнизах обрывов или в заброшенных гнёздах воронов и орланов. Питаются в основном птицами (куликами, воронами, чайками, крячками и утками, реже — гусями), которых хватают на лету. В погоне за добычей сапсан в момент пикирования может достичь огромных скоростей! Максимальная зарегистрированная скорость сокола-сапсана в пике составляет 389 км/ч!

Не всякий самолёт летает с такой скоростью! Этот рекорд был зафиксирован в 2005 году.

Преследование человеком и неумеренное использование ядохимикатов в сельском хозяйстве привели к тому, что эта прекрасная птица везде стала редкой или полностью исчезла.

Повезло лишь сапсанам Арктики. На Севере сокола называют гусиным пастухом и недаром: дикие гуси охотно поселяются рядом с его гнёздами. Ведь на земле он никого не задевает. Но в небе безумных атак соколов не выдержит никто!

  • Во время II мировой войны сапсанов убивали, потому что они охотились на почтовых голубей, которые передавали военные сообщения.
  • Самец сапсана почти на треть меньше самки, кроме того, он отличается тёмным оперением на вершине головы, по бокам которой чётко выделяются тёмные «усы».
  • У этого сокола большие глаза и острое зрение. Свою жертву сапсан может распознать даже с высоты 300 метров.
  • Сапсанов издавна использовали для охоты. В наше время охота с соколом является только спортом.
  • Сапсану грозит исчезновение. Численность популяции этих птиц неуклонно уменьшается.

БРАЧНЫЙ ПОЛЁТ СОКОЛА САПСАНА

В первой части брачного полёта сапсан передаёт самке добычу.

Самка в это время летит хребтом вниз и принимает добычу из когтей самца.


— Где сокол-сапсан обитает постоянно
— Места зимовок
— Места гнездования

ГДЕ ОБИТАЕТ

Область распространения значительная: от Арктики до Южной Азии и Австралии, от западной части Гренландии почти по всей Северной Америке.

ЗАЩИТА И СОХРАНЕНИЕ

Пары, гнездящиеся в опасных для существования районах, находятся под охраной. В Европе в наши дни проживает около 5000 выведенных пар.

Сокол-сапсан. Видео (00:02:23)

Охотится сапсан с быстротой молнии: высмотрев добычу во время неспешного парения, он надстраивается прямо над ней и стремительно, почти вертикально углом падает на неё сверху.

От сильного удара у несчастной жертвы нередко отпадает голова. Если же ей удалось удержаться на плечах, хищная птица ломает шею бедолаги клювом или пускает в ход свои острые когти.

Соколиная охота с соколом-сапсаном. Видео (00:03:22)

Соколиная охота, ловчие птицы — в этом видео Вы можете увидеть как охотник ловит дичь с помощью сокола, вернее сокол ловит для своего хозяина.

Сокол сапсан.

Самая быстрая птица в мире. Видео (00:03:53)

Самым быстрым животным на Земле является сокол Cапсан. В пикировании он достигает невероятной скорости — 90 м/с (свыше 320 км/ч). В 2005 году был зарегистрирован рекорд — сапсан пикирующий со скоростью 389 км/ч.

Он падает на жертву с неба и сбивает её ударом когтистых лап. Удар бывает настолько силён, что у жертвы часто отрывается голова.
Сапсан — это крупный сокол и в своей группе он уступает по величине лишь кречетам. Размеры одного крыла от 30 до 40 см, размах крыльев достигает 120 см.

Общая длина птицы от 40 до 50 см, его вес до 1200 г.
Стоит отметить, что сокол-сапсан обладает и самым острым зрением в мире.

Сапсан атакует Лабрадора. Видео (00:01:41)

Сапсан атакует Лабрадора, когда тот хотел подойти к его добыче.

Сокол Сапсан, Скорость 183 миль в час. Видео (00:03:01)

Завоевавшие воздух

Полет птицы

Полет птицы обычно принято сравнивать с полетом самолета. Это сравнение можно проводить лишь до определенных пределов, так как в полете аппаратов с машущими и с неподвижными крыльями есть много различий. Почему птица, которая значительно тяжелее воздуха, все-таки отрывается от земли? Как и в случае с самолетом, это происходит благодаря возникновению аэродинамических сил при поступательном движении. Этих сил две: лобовое сопротивление, стремящееся задержать продвижение вперед, и подъемная сила, поднимающая крыло, а с ним и тело птицы. Чтобы проследить возникновение этих сил, рассмотрим явление подробнее.

Возьмем плоскую пластинку и будем перемещать ее в воздухе (рис. 7). Тогда на нее будут действовать сила тяги и сила сопротивления воздуха. Последняя будет возрастать пропорционально площади пластинки и квадрату скорости движения. При наклонном положении пластинки (рис. 8) она как бы отбрасывает воздух, встречающий ее на пути, вниз, а сама стремится подняться вверх. Реакция воздуха называется силой полного сопротивления. Она, с одной стороны, не пускает пластинку двигаться вперед (лобовое сопротивление), а с другой - поднимает ее вверх (подъемная сила). Угол между горизонтальным направлением и наклоном пластинки называется углом атаки.

У нас получилась почти готовая модель крыла. Осталось только изменить ее форму. Пусть это будет выпукло-вогнутая пластинка, передний конец которой закруглен и утолщен, а задний сходит на нет. Она напоминает профиль крыла птицы (рис. 9).


Ее преимущество в том, что и при нулевом угле атаки, т. е. при движении вперед параллельно своей хорде ab, подъемная сила все равно возникает, что невозможно в случае с пластинкой. При встрече с крылом воздух изменяет свою скорость, она увеличивается над выпуклой поверхностью крыла, а под крыло попадает меньшее число частиц воздуха, и движение их здесь замедлено. Давление воздуха обратно пропорционально скорости его движения. Поэтому под крылом оно увеличено, а над крылом уменьшено. Сгущение струй и наибольшая их скорость у передней, утолщенной части крыла. Максимальную подъемную силу крыло имеет при углах атаки в 16-24°. Это - критические углы атаки.

Подъемная сила возникает в основном между туловищем и кистевым сгибом, а сама кисть крыла, несущая длинные маховые перья, слегка перекручиваясь во время полета, как бы ввинчивается в воздух и создает тягу. Таким образом, главное отличие птицы от самолета в том, что птичье крыло совмещает в себе функции и винта самолета, и его несущих плоскостей, создающих подъемную силу. Вместе они составляют сложнейший аэродинамический комплекс со множеством переменных характеристик, чрезвычайно трудно поддающихся изучению и моделированию. Не вдаваясь в подробности, укажем: представление о том, что птица получает толчок вверх, опуская крылья вниз, а поднимание крыла вызывает опускание птицы, совершенно неверно. Поэтому и приспособлений, уменьшающих сопротивление воздуха при подъеме крыла, у птиц пет. И при подъеме крыла, и при его опускании существует сила, противодействующая силе тяжести. Но тяга возникает только при опускании крыла, да и то лишь в его концевой части: она уравновешивает лобовое сопротивление, действующее во время взмаха.



Желающих подробнее разобраться в механизме полета мы отсылаем к книге Н. А. Гладкова "Биологические основы полета птиц" (М., 1949). Источник энергии для полета лежит в мускулатуре птицы, и работа состоит в преодолении силы тяжести. При неподвижных крыльях источник энергии лежит вне птицы - в движении воздушных масс.


Различают гребной н парящий полеты птиц. Парение - это полет на почти неподвижных крыльях. Парением птица может подниматься и спускаться; при спуске она часто прибегает к скольжению. При этом птица использует термические восходящие потоки, возникающие над неравномерно нагреваемой подстилающей поверхностью, или, как их обычно называют, термики. Легкий термический поток над ровной местностью или у склона имеет скорости от 0,5 до 1,0 м/с; в эту амплитуду и укладываются скорости парящих птиц. Чем выше, тем скорость восходящих потоков больше, поэтому лучшие парители - грифы и кондоры - забираются иа огромную высоту.
Термин нередко достигает в высоту несколько тысяч метров, диаметр его десятки или сотни метров. Парение кругами объясняется стремлением птиц не выходить за пределы поддерживающих их терминов. При парящем полете на дальность птица кругами поднимается вверх в пределах одного термина» затем планирует (скользит) к другому, вновь поднимается на высоту возможно большую, вновь скользит и т. д. Термики особенно сильны бывают под облаками. Иногда облака образуют целые гряды, и тогда в атмосфере возникает своеобразная воздушная дорога, которой и пользуются парящие птицы. В некоторых местах вследствие особенностей орографии восходящие потоки воздуха отличаются особым постоянством. В них, как правило, проходят четкие пролетные пути аистов, журавлей, дневных хищных птиц. Небольшие термики образуются иа лесных полянах и у опушек леса; ими обычно пользуются при охотничьих облетах своих участков канюки. При движении грозового облака воздушные массы поднимаются со скоростью 7-8, а иногда и 10 м/с. Этим тоже пользуются многие птицы, в частности чайки. Ранним утром терминов почти не бывает, поэтому грифы начинают парить после того, как солнце прогреет землю и возникнут восходящие потоки.
Кроме терминов птицы используют потоки обтекания, возникающие при встрече движущихся масс воздуха с препятствиями. На суше это может быть дом, лес, холмы к особенно горы. В море потоки обтекания возникают от высокой волны, парохода, острова. При следовании за пароходом чайки держатся в слабых штоках обтекания по нескольку часов без взмахов крыльями. Но воздух над морской поверхностью более подвижен, чем над сушей. Восходящие" и нисходящие потоки постоянно перемешиваются., беспрерывно образуются локальные завихрения, поэтому парение над морем вынужденно носит более динамичный характер, чем спокойное, относительно статическое парение в. материковом воздухе. Отсюда и различия в строении крыльев лучших парителей суши и моря: могучие широкие крылья грифа и длинные узкие крылья альбатроса. Последний при парении использует разницу в скорости движения слоев воздуха. У поверхности воды птица помещается между двумя волнами, где ветер слабее. Затем поворачивает против ветра и возносится на высоту 10--15 м, где поворачивается вбок и с боковым, а то и с попутным ветром соскальзывает почти до самой воды, после чего вновь разворачивается против ветра. У самого крупного странствующего альбатроса такой: цикл занимает 10-11 с.
I
Иногда птицы попадают в нисходящие потоки воздуха, так называемые «воздушные ямы», что случается чаще с молодыми. Птицы падают иа несколько десятков метров, нередко при этом они оказываются в воде, но обычно успевают выбраться из воздушной ямы энергичным машущим полетом.
Гребной полет ¦-¦ это полет с машущими крыльями. Источником энергии здесь служит мускульная сила птицы, а не энергия движущегося воздуха, как при парящем полете.. Моменты планирования в комбинации с взмахами крыльев используются многими птицами, но никаких особых «полу- скользящего» или «скользяще-гребного» типов полета выделять, как показал Н. А. Гладков (1949), не следует.
В пределах машущего, или гребного, полета можно выделить вибрационный полет (колибри) и волнообразный полет (дятлы), когда взмахи чередуются с паузами, при которых крылья прижаты к телу. Так же летают зяблик и многие другие воробьиные. Наконец, термин хлопающий полет правильнее относить только к полету куриных. Он отличается быстрыми и шумными взмахами крыльев, кратковременностью и способностью с места давать большую скорость. Некоторые типы полета, например полет утки, кулика, голубя, сокола, исследованы плохо и не имеют своих терминов. Они пока объединяются под названием «гребной полет», хотя и существенно различаются.
Энергия скользящего полета берется из ускорения силы тяжести. Обычно птица прибегает к скользящему полету,.
имея уже определенную поступательную скорость. При этом юна мало теряет и в высоте, и в скорости, так как основной источник энергии заключается не в силе тяжести, а в энергии поступательного движения, развитой предыдущими взмахами крыльев. Полет стрижа, видимо, и есть сочетание вибрационного полета со скольжением. Скользящий полет часто называют планирующим.
«Трепещущий» полет - «висеиие» птицы в воздухе с помощью быстрых и соответственно направленных взмахов крыльев (пустельга, высматривающая добычу) - утомителен и ограничен во времени. «Висеиие» колибри осуществляется при совершенно особых движениях крыльев и потому, как уже говорилось, выделяется в особый вибрационный полет. По механике работы крыла он схож с полетом насекомых. Полет спиной вперед доступен только колибри.
‘ Взлет требует приобретения необходимой для нормального полета скорости. Крупные птицы обычно бросаются вниз. Так, аист падает в воздухе подчас до 10 м, прежде чем наберет нужную скорость и сделает первый взмах крыльями. Мелкие птицы делают один прыжок в воздух, а крупные - разбегаются против ветра. Большой разбег по воде делают утки, особенно нырковые, а также лысуха. Для стрижа взлет с поверхности земли труден, хотя н возможен. А поганка с земли взлететь не может, только с воды. При взлете все птицы машут крыльями чаще и сильнее, чем при установившемся полете; амплитуда каждого взмаха также больше.
При посадке птица уменьшает крыльями скорость полета, но кистевые части крыльев при этом продолжают совершать ту же работу, что и при трепещущем полете, - создавать силу, направленную вверх. Поэтому подъемная сила не падает ниже минимально допустимой величины. Перед самой посадкой широко расставленные крылья гасят скорость и переводят энергию поступательного движения в подъемную силу: птица несколько поднимается в воздухе и затем спокойно опускается в намеченной точке. У многих птиц в торможении участвуют хвост н лапы.
Фигурный полет -- мертвые петли, бочки, спуск на крыле, полет вверх ногами - доступен многим птицам, но используется ими редко, обычно лишь во время брачных игр.
Скорости полета птиц велики. Так, грачи развивают скорость 65 км/ч, скворцы -¦ 70-80, серый журавль и крупные чайки - 50, зяблики, чижи -- 55, ласточки-касатки - 55-60, дикие гуси - 70-90, кулики - в среднем 90 км/ч. Быстрее всех летают стрижи: черный стриж летит со скоростью ПО-150 км/ч, а стриж колючехвостый считается самой быстрой птицей, его скорость составляет 170 км/ч.
От скорости, с которой птица передвигается в воздухе, следует отличать суточную дальность полета, которая даже во время весенних миграций неожиданно мала. Так, зафиксированная дальность полета у аистов составляла в сутки 91, 120 и 240 км, у грача - в среднем 55, у горихвостки - 44’км. Как правило, средняя суточная дальность полета птиц приблизительно соответствует по абсолютным показателям их обычным кормовым перемещениям в гнездовое время. И только в особых условиях, чаще всего над морем, птицы совершают длительные беспосадочные полеты. Так, бурокрылая ржанка во время осенних миграций преодолевает над Тихим океаном расстояние от Алеутских до Гавайских островов - примерно 3000 км. Многие птицы -пересекают Мексиканский залив в месте, где его ширина 1300 км. При перелетах через Средиземное море птицы летят над водой 600-750 км. Около 300 км приходится преодолевать перепелам, летящим осенью из Крыма в Турцию через Черное море.
Среди птиц можно найти полный ряд переходных видов - от строго оседлых до правильно перелетных. У широко распространенных птиц такие переходы наблюдаются в пределах одного вида: сапсан, кряква, камышница. Наличие особей, не проявляющих стремления к перелетам, отмечалось у многих видов (зарянка в Мо-скве, кряквы в Прибалтике, многие утки в истоках Ангары, полевые жаворонки в Тургайской ложбине и т. д.). В последнее время возникают оседлые городские популяций у перелетных видов (черный дрозд в городах Европы, кряква на прудах Москвы и т. д.). Таким образом, перелеты птиц - вынужденное явление, к которому в ходе эволюции птицы пришли, следуя путем «проб и ошибок». Ошибки были губительны, удачные пробы приводили к выживанию, к передаче опыта потомству.
Перелеты птиц, хотя в отдельных -случаях и повторяют путь расселения вида, в целом хорошо соответствуют современной географической и экологической обстановке. Они очень динамичны и подчас меняются на наших глазах. Созданы новые водохранилища в Туркмении - и появились новые зимовки и новые перелетные пути к ним. Зарегулирование стока Нила и осушение нильской дельты вызвало массовые перелеты палеарктическнх уток через Сахару на зимовки в Экваториальную Африку.
Во время перелетов птицы летят либо широким фронтом, либо попользуют определенные экологические русла, дающие основания говорить о пролетных путях. В этих случаях птицы следуют вдоль берега моря или склона горного хребта, летят по речным долинам, через перевалы и т. д. (например, Куршская коса на Балтике или перевал Чокпак в Таласском Алатау). Выделяются также «узловые точки» пролетных трасс, в которых птицы в массе останавливаются на отдых и кормежку, задерживаясь нередко на длительный
срок, чтобы затем совершить очередной «бросок» до следующей * «узловой точки». Примерами могут служить дельты Волги, Кубани, Амударьи, некоторые острова (Мальта,. Гельголанд, Барсакельмес) и озера (Теииз, Челкар-Теигиз„ Балхаш близ устья Или), островные леса (нагорные дубравы Поволжья, степные боры Казахстана, массивы саксаульников в Кызылкумах) и т. п.
Высота полета птиц во время перелетов, особенно ночью, оказалась много выше, чем считалось ранее. Над Северным морем отмечено много перелетных птиц на высоте 3900 м, а максимальная высота - 6400 м! На первый взгляд это явление трудно объяснимо, но высота обеспечивает ориентировку перелетных птиц по наземным ориентирам. Хотя кривизна Земли и ограничивает видимость, но все же при подъеме она заметно увеличивается. Так, при прозрачном воздухе видимость с высоты 100 м - 35,7 км, 1000-113 км, 2000 - 159 км, 3000 м - 195 км.
Кроме того, на большой высоте птицы могут воспользоваться сильными воздушными течениями нужных направлений, в том числе и восходящими. Сплошная облачность дезориентирует птиц, они либо прекращают перелет, либо летят в случайно выбранном направлении, а потом дрейфуют по ветру, видимо, теряя навигационные способности.
Во время перелетов у птиц самых разных систематических и экологических групп бывает значительное число «ошибок» - залетов. Примеров дальних и неожиданных залетов можно привести много: поморники - на Рыбинском водохранилище и оз. Теигиз Целиноградской обл., фламинго- под Томском и Ленинградом, моевка - в Туве, горные чечетки - в Московской обл. и т. д., вплоть до австралийского журавля - в Якутии (в 80-х годах XIX в. добыт под Якутском, хранится в Зоологическом музее МГУ) и колибри - на о. Ратманова в Беринговом проливе.
В ряде случаев залеты, несомненно, вызываются штормовыми ветрами, ио значительное их число обусловлено ошибками самих птиц. Залеты, как правило, заканчиваются гибелью, хотя в отдельных случаях могут приобретать регулярный характер и приводить в конце концов к расширению ареала. Именно так, залетами, расселялись кольчатая гор-1 лица, свнрнстелевый сорокопут, майна и другие птицы. Гага на Черном море из залетной превратилась в регулярно зимующую и, наконец, загнездилась.
Залеты птиц, многочисленные их ошибки, ставят под сомнение абсолютный характер их способности к ориентации в пространстве. Это очень важный, принципиальный момент. Способность птиц находить дорогу к местам гнездовий или зимовок принимается априорно. Закономерности птичьих миграций имеют вероятностный характер. При этом для
17
жаждой отдельно взятой особи вероятность прилета в нужную точку далека от стопроцентной. Правильнее всего будет считать, что количество птиц, успешно завершающих перелеты, обеспечивает ежегодное воспроизводство в количестве, -покрывающем ежегодную убыль. При этом нормы годовой -смертности у перелетных птиц, улетающих от суровой зимы в благодатные теплые края, отнюдь не меньше, чем у птиц, остающихся зимовать в суровых северных условиях. В этом отношении перелетные птицы ничего не выигрывают по сравнению с оседлыми, просто они не могут иначе, они вынуждены лететь. И при малейшей возможности не лететь - в массе не летят, остаются. Так, обильный урожай рябины в.необычайно суровую зиму 1939/40 г., когда ® Москве температура воздуха падала до -44°С, привел к массовой зимовке дроздов-рябииников. Обычно же, в годы со средним и тем более низким урожаем рябины, эти птицы зимовать не остаются, хотя температурные условия бывают мягче. Обильные урожаи семян березы и ольхи приводят к массовым зимовкам чижей и т. д. Наконец, в Москве возникли оседлые популяции грачей и скворцов, которые всю зиму -кормятся на свалках и около баков для мусора. Количество зимующих птиц этих видов растет из года в год и мало зависит от степени суровости зимы. В Прибалтике в местах -сброса теплых вод электростанциями еще недавно зимовало около 5 тыс. крякв, по последним сведениям, их количество выросло до 50 тыс.
«Захват» птиц, особенно молодых, волной мигрантов разных видов обычно не учитывается даже при постановке опытов с насильственной задержкой. Такие опыты ставились с утками в США, с аистами в Европе. Молодых птиц отлавливали, затем ждали пока улетят все птицы этого вида, затем, окольцевав их, выпускали и, наконец, получив кольца о мест обычных зимовок этих видов, считали, что наследственное запечатление пролетного пути доказано. А что поток более поздних мигрантов обязательно должен был подхватить этих птиц, не учитывалось. В природе обычны случаи, когда к группе или стае птиц одного вида присоединяются особи других видов. Особенно часто это можно наблюдать именно осенью, когда среди мигрантов преобладают молодые птицы. Среди куликов или речных уток осенью трудно встретить стаю из птиц одного вида, чаще всего они смешанные.
Когда серые гуси или журавли совершают обычные кормовые перелеты (с мест дневки или ночевки на кормежку и обратно), то каждый косяк птиц летит таким образом, чтобы видеть стаю, летящую впереди. Если передний косяк начинает набирать высоту, то же самое и иа том же месте или чуть раньше делает следующий за ним косяк и т. д. Паво- роты, разведочные круги, посадка - все повторяется. Таким образом, складывается коллективная система использования пространства и избегания опасности, система, которая охватывает не только членов одного косяка, но значительно-" большую массу птиц, порой до нескольких тысяч.
"в. Э. Якоби, используя метод радарных наблюдений, показал что и во время перелетов птицы нередко ориентируются по впереди летящим стаям. Расстояние между стаями- может быть 50-60 км, т. е. стаи находятся в Пределах видимости друг друга. Связанные зрительно, они обозревают сразу сотни километров. Чем больше высота полета и многочисленнее стаи, тем реже они летят. При низкой облачности и плохой видимости стаи малочисленные, летят они ниже и ближе друг к другу. У некоторых видов, например" серой вороны, перелет представляет поток одиночных вроде бы птиц, но каждая из них следует за своим «ведущим» и следит за иим, а порой - и за соседями. Возможен и такой вариант, при котором в начале осеннего пролета летят одиночки, потом они соединяются в стайки, а еще южнее-- в крупные стаи. В любом случае такой шток может растянуться на многие сотни километров. В. Э. Якоби предполагает, что именно так осуществляется перелет воробьиных, птиц над морем. Поскольку птицы берут направление, очевидно, на берегу, а потом летят, не сворачивая, ясно, что за- первой стаей, взявшей правильное направление, могут долгое время следовать все новые и новые стаи разных видов. Такая эстафета может продолжаться и ночью. Видимо, это- ближе к истине, чем утверждения, что птицы вносят поправку на положение солица, пользуясь при этом особыми «внутренними часами», и более того, ориентируются по Полярной, звезде. Конечно, птицы учитывают положение солица и звезд и их смещения (в экспериментах, правда, достаточно противоречивых, это было показано), -но «подвижные ориентиры» в виде летящих впереди стай, по-видимому, гораздоважнее.
Не менее важны наземные ориентиры *- долины рек, горные хребты, озера, а в «ряде случаев и отдельные, хорошо: заметные постройки, башни, высотные дома и пр. Так, почтовые голуби Останкинской биостанции МГУ при тренировках неизменно ориентировались на купол главного павильона ВДНХ и лишь от него поворачивали к своей голубятне.
Способность птицы возвращаться к своему гнезду с любого значительного расстояния получила название хоминг (от английского home - дом). Опыты с.разными видами птиц дали противоречивые результаты. Яспо лишь, что возврат к гнезду носит столь же вероятностный характеїр, как и попадание на зимовку или в гнездовую область во время перелетов. В незнакомой местности сразу после вылета по

вой линии хорошо заметные формы рельефа, телевизионная вышка и т п.), поворачивают в нужном направлении. Во всяком случае/почти все увозившиеся от гиезд птицы тра-
иьлпим * - -
тили иа возвращение к ним значительно больше времени, чем требовалось на полет по прямой. Естественно, что срок возвращения всегда оказывался прямо пропорционален расстоянию, на которое увозили птицу. Наконец, при массовых опытах с ласточками и другими птицами было выяснено, что процент вообще не вернувшихся птнц достаточно велик. То же наблюдается и при тренировке на дальние расстояния почтовых голубей: процент возвратов и их скорость быстро падают при увеличении расстояния.
Для ориентировки птиц во время перелетов существенное.значение имеют их поелегиездовые кочевки, во время которых они знакомятся с территорией. Работами Я. А. Внксне доказано, что выбор молодыми озерными чайками будущего места гнездования в значительной мере определяется нх знакомством с водоемами, полученным во время иослегнездо- вых кочевок. Эти наблюдения раскрывают одну из причин частого нарушения птицами так называемого «гнездового консерватизма», т. е. обязательного возвращения для гнездования к месту своего рождения. С другой стороны, они не оставляют сомнения в том, что зрительная память у птиц великолепно развита.
Затраты энергии во время перелетов впервые точно установлены в опытах на Куршской косе. На расстоянии 50 км друг от друга были построены большие ловушки. Разница в среднем уровне энергетических резервов у птнц, попавших в первую и вторую ловушки, составляла затраты энергии на 50 км полета. Выяснилось, что зяблики тратят на полет в -3,8 раза больше энергии, чем иа «существование», юрок и чиж - в 2,5 раза больше. Если учесть заведомо заниженные показатели энергии существования птиц в клетках, то разница между затратами энергии во время «обычной» жизни и иа перелетах будет еще меньше.
В. Р. Дольник с сотрудниками установил, что дальние мигранты, обладающие экономичным полетом, тратят около 3 ккал на 100 км полета. Если принять эти цнфры за основу, то затраты энергии будут примерно равны:

Средиземное море и Сахара (3600 км) - 108 ккал,
Мексиканский залив Балтийское море Черное море
(3500 км) - 105 ккал, (300 км)- 9 ккал, (500 км) - 15 ккал.

Расчеты эти формальны, они не учитывают возможности выбора птицами сильных воздушных течений, идущих в нужном направлении. Но тем не менее самые дальние мигранты из мелких птиц, весом 15"-30 г, должны иметь в организме энергетические резервы общим объемом не менее 100 ккал. Таким резервом служит жир.
Жир обладает калорийностью 9,5 ккал/г, тогда как калорийность образующихся в организме углеводов (гликогена) ниже более чем в два раза - 4,2 ккал/г. При сжигании в ходе работы жира высвобождается некоторое количество воды (так называемая метаболическая вода); пока птица тратит жир, она почти не нуждается в воде. Путь окисления жира в тканях птицы короче, чем при использовании с качестве источника энергии углеводов, что очень важно при высоком темпе обмена веществ. Наконец, при окислении углеводов образуется молочная кислота - одни из основных источников мышечного утомления. При окислении жира молочной кислоты не образуется, поэтому у перелетных птиц во время миграции жнр вытесняет гликоген из его основных хранилищ - печени и грудных мышц. Это дает значительный выигрыш. Примерно половина необходимого количества жира размещается в мышцах печени и брюшной полости. Другая половина откладывается непосредственно под кожей птиц; вначале подкожный жир откладывается только на.птерилиях, а потом - и на аптериях. У многих куликов, например, тело покрыто толстым слоем жира, который просвечивает под тонкой кожей. Масса птиц во время миграций на 20-40% больше обычного за счет жира. Чтобы обеспечить себя энергией в 100 ккал для дальнего перелета (порядка 3000 км), птица должна запасти около 11 г жира.
Обычно максимальное количество" жира соответствует необходимым затратам для совершения очередного «броска» во время перелета. Накопление жира у мелких птиц (при благоприятных условиях питания) идет со скоростью 0,1- 0,5 г/сут. Поэтому «набор» миграционного жира занимает не менее 10-15 дней (с учетом, что он начинается ие от нуля, а от какого-то ранее достигнутого уровня). Количество ¦потребляемой пищи резко возрастает, наблюдается гипер- ¦фагия, или переедание. В немиграционный период, даже при обилии пищи, гиперфагии и мощных жировых отложений не бывает. Нет этого и у оседлых птиц, которые никогда так не жиреют, как перелетные.
При истощении жировых резервов миграция прерывается и начинается усиленное кормление. В отдельных случаях мелкие птички за сутки могут накопить более \ г жира, а н клетке отощавшая птица набирает до 2 и даже 5 г жира н сутки!
Запасы жира необходимы для нормального перелета.
При осеннем перелете перепелов в Крыму вначале летят* по данным Е. П. Спангенберга, почти исключительно взрослые самцы с обильным запасом жира; их масса достигает 146 г. Позже среди пролетиых птиц постепенно начинают преобладать самки, а затем все чаще встречается молодь обоего пола, обладающая довольно значительным количеством жира. Когда же массовый- пролет перепелов закончится, на южном побережье «появляется поздняя молодь массой не выше 75 г, которая, по-видимому, не летит дальше, а частично гибнет в зимнее ненастье, частично благополучно переживает зиму. Такие молодые птицы никогда не образуют стай и высыпок, а одиночками (распределяются на площади южного побережья» (Спаигенберг, 1948, с. 89).
Для успешного окисления значительного количества жира в полете требуется обилие кислорода. Здесь следует обратить внимание на особенности дыхательной системы птиц, снабжающей организм кислородом. Легкие птиц невелики и занимают небольшую часть орудной полости. Очень мала.растяжимость птичьих легких, особенно при сравнении их с легкими млекопитающих. Более того, если у нелетящей птицы механизм дыхаиия сводится к приближению и удалению грудииы от позвоночника за счет работы межреберных мышц и движения ребер, то в полете этот механизм выключается, ребра делаются неподвижными. Но включается другой замечательный механизм - «двойное дыхание». В действие вступают воздушные мешки.
Кроме подсобной носоглоточной системы воздушных мешков, связанных с пневматизацией некоторых костей черепа, у птиц имеется сложная и огромная по сравнению с легкими система легочных мешков. Они отходят от разветвлений бронхов и в отличне от легких очеиь растяжимы. Ко проходящие в стейках воздушных мешков кровеносные сосуды не связаны с кровеносной системой легких, так что считать воздушные мешкн органами дыхания в прямом смысле нельзя. В то же время роль их в дыхании птиц велика.
Различают две пары самых крупных воздушных мешков- загрудные и брюшные, впереди от них лежат еще т.ри пары более мелких мешков. В сумме воздушные мешки наполняют все тело птицы, их ответвления проникают в кости, мускулы, позвоночник; у некоторых птиц ответвления воздушных мешков лежат между кожей и мускулатурой. Воздушные мешки играют решающую роль в вентиляции легких. П.ри вдохе воздух, богатый кислородом, наполняет не только легкие, но и воздушные мешки. При выдохе воздух из мешков вновь продувается через легкие н отдает им свой кислород. Мышцы, управляющие движением крыла, особенно важны: «они давят на передние мешки, продувая бывши» в них воздух через легкие. Так возникает «двойное» дыхание птиц, при котором усвоение организмом кислорода происходит при вдохе и при выдохе. Отсюда и высокая интенсивность окислительных процессов у птиц. Местом обмена газов служат не только легкие, ио и пневматические полости костей, одетые эпителием и богатые капиллярами. Кроме того гемоглобин крови птиц легко отдает кислород, поэтому выделение кислорода капиллярными сосудами в ткаии тела происходит очеиь интенсивно. С этим и связаны высокая постоянная температура тела птиц и энергичный обмен веществ. Число дыханий у мелких птиц очень велико: у воробьиных - около 90-100 раз в минуту, у колибри даже 108-146 раз (по другим сведениям - 180 раз), тогда как у коршуна-18, у кондора - 6, у эму - 2-3 дыхания в минуту. При беспокойстве количество дыханий и ударов сердца птицы резко возрастает.
Благодаря системе воздушных мешков и «двойному» дыханию, чем быстрее машет птнца крыльями в полете, тем лучше и полнее сменяется воздух в ее легких. Поэтому одышки при быстрых летательных движениях у птиц иет. Воздушные мешки имеют и другие важные функции. С их внутренних поверхностей происходит испарение, что особенно важно при сухой, лишенной желез коже. Тем самым успешность терморегуляции, в частности предохранение от перегрева важнейших органов тела (сердца, легких, кишечника, половых желез и пр.) в значительной мере определяется работой воздушных мешков. В холодную же погоду мешки способствуют сохранению тепла. Кроме того, воздушные мешки сокращают треиие между внутренними органами птицы, облегчают изменение их формы и объема -при наполнении зоба и пищевода. При броске в воду воздушные мешки ослабляют толчок, испытываемый организмом, а под водой они могут многократно прогонять один и тот же объем воздуха через легкие, До полной отдачи кислорода, чем продлевают время нахождения птицы под водой. Кроме того, в воде н на воде воздушные мешки способствуют регулированию удельного веса птицы. Наконец, у некоторых птиц воздушные мешки раздуваются при токовании (фрегат) или играют роль резонаторов.
Энергетика полета обеспечивается и приспособлениями к нему кровеносной системы птиц: у них полностью отделена артериальная кровь от венозной, сердце четырехкамерное и сравнительно крупное. Особенно большие сердца у хорошо летающих птиц. При приблизительно равной массе самих птиц сердце чеглока составляет 1,7% общей массы тела, у пустельги - 1,19, а у сороки -¦ только 0,934%. Наибольшая относительная масса сердца у самых мелких птиц: у пенечки-трещотки-1,829%, а у колибри - 2,4-2,85%! Повышенная интенсивность кровообращения связана с большой потерей тепла V мелких птиц, имеющих «невыгодное» соотношение объема тела и его поверхности. Так, потеря тепла на килограмм массы за 1 ч для утки равна 6 ккал, для голубя - 10 и для воробья - 35. Относительная масса сердца увеличивается также у северных и горных подвидов.
Энергичный обмен веществ обусловлен еще и большой частотой сердцебиений; у мелких птиц частота пульсаций сердца заметно выше, чем у крупных. Сердце воробья сокращается 460 =раз в минуту, у галки - 342, у каиюка - 301, у кряквы - 317, у индюка--93, у страуса--140 раз. Эти цифры примерны; в состоянии покоя сердце бьется почти в два раза медленнее, чем при быстром движении. У разных особей вариации также могут быть велики: у домашних кур - 140--390 сердцебиений в минуту, у голубей-136- 360, у зеленушки - 703-848, у щегла - 914-925. У колибри в состоянии покоя пульс достигает 500 ударов в минуту, в полете же - до 1200 ударов при 600 дыханиях amp; минуту. Правда, цри ночном оцепенении и снижении температуры тела до 15-20°С (по некоторым данным, даже до 10-12°) пульс колибри снижается до 100-50 ударов в минуту. Таким образом, напряженность кровообращения у птиц хорошо соответствует большим затратам энергии во время полета.

© 2024 Финансы. Бизнес. Недвижимость. Услуги. Страхование