Вконтакте Facebook Twitter Лента RSS

Метод минимального риска. Методы статистических решений

Лабораторная работа 2 «Эксплуатация и диагностика опор контактной сети»

Цель работы: ознакомиться со способами определения коррозионного состояния железобетонной опоры контактной сети

Порядок выполнения работы :

1) Изучить и составить краткий отчет о работе прибора АДО-3.

2) Изучить и решить задачу по методу минимального риска (согласно вариантам (по номеру в журнале)

3) Рассмотреть спец.вопрос о способах диагностики состояния опор (за исключением угла наклона).

П.п. 1 и 3 выполняются бригадой в количестве 5 человек.

П.2 выполняется индивидуально каждым студентом.

В результате необходимо сделать индивидуальный электронный отчет и прикрепить его в blackboard.

Метод минимального риска

При наличии неопределенности принятия решения применяют специальные методы, учитывающие вероятностную природу событий. Они позволяют назначать границу поля допуска параметра для принятия решения о диагностировании.

Пусть производится диагностика состояния железобетонной опоры вибрационным методом.

Вибрационный метод (рис 2.1) основан на зависимости декремента затухающих колебаний опоры от степени коррозии арматуры. Опора приводится в колебательное движение, например, при помощи троса оттяжки и сбрасывающего устройства. Сбрасывающее устройство калибруется на заданное усилие. На опоре устанавливается датчик колебаний, например акселерометр. Декремент затухающих колебаний определяется как логарифм отношения амплитуд колебаний:

где А 2 и А 7 – амплитуды, соответственно второго и седьмого колебаний.

а) схема б) результат измерений

Рисунок 2.1 – Вибрационный метод

АДО-2М измеряет амплитуды колебаний 0,01 ... 2,0 мм частотой 1 ... 3 Гц.

Чем больше степень коррозии, тем быстрее затухают колебания. Недостатком метода является то, что декремент колебаний в большой степени зависит от параметров грунта, способа заделки опоры, отклонений технологии изготовления опоры, качества бетона. Заметное влияние коррозии проявляется лишь при значительном развитии процесса.

Задача стоит в выборе значения Хо параметра Х таким образом, чтобы при Х>Хо принимали решение о замене опоры, а при Х<Хо не проводили управляющего воздействия.

. (2.2)

Декремент колебаний опоры зависит не только от степени коррозии, но и от множества других факторов. Поэтому можно говорить о некоторой области, в которой может находиться величина декремента. Распределения декремента колебаний для исправной и прокорродировавшей опоры показано на рис. 2.2.

Рисунок 2.2 - Плотность вероятности декремента колебаний опоры

Существенно, что области исправного D 1 и коррозионного D 2 состояний пересекаются и потому невозможно выбрать x 0 так, чтобы правило (2.2) не давало бы ошибочных решений.

Ошибка первого рода - принятие решения о наличии коррозии (дефекта), когда в действительности опора (система) находится в исправном состоянии.

Ошибка второго рода - принятие решения об исправном состоянии, тогда как опора (система) прокорродировала (содержит дефект).

Вероятность ошибки первого рода равна произведению вероятностей двух событий: вероятности наличия исправного состояния и вероятности того, что x > x 0 при исправном состоянии:

, (2.3)

где P(D 1) = P 1 - априорная вероятность нахождения опоры в исправном состоянии (считается известной на основании предварительных статистических данных).

Вероятность ошибки второго рода:

, (2.4)

Если известны цены ошибок первого и второго рода c и y соответственно, то можно записать уравнение для среднего риска:

Найдем граничное значение x 0 для правила (2.5) из условия минимума среднего риска. Подставляя (2.6) и (2.7) в (2.8) дифференцируя R(x) по x 0 , приравняем производную нулю:

= 0, (2.6)

. (2.7)

Это условие для нахождения двух экстремумов - максимума и минимума. Для существования минимума в точке x = x 0 вторая производная должна быть положительной:

. (2.8)

Это приводит к следующему условию:

. (2.9)

Если распределения f(x/D 1) и f(x/D 2) одномодальные, то при:

(2.10)

условие (4.58) выполняется.

Если плотности распределений параметров исправной и неисправной (системы) подчинены закону Гаусса, то они имеют вид:

, (2.11)

. (2.12)

Условия (2.7) в этом случае принимает вид:

. (2.13)

После преобразования и логарифмирования получаем квадратное уравнение

, (2.14)

b = ;

c = .

Решая уравнение (2.14) можно найти такую величину x 0 , при которой достигается минимум риска.

Исходные данные:

Исправное состояние:

Математическое ожидание:

Вероятность исправного состояния системы:

Среднеквадратичное отклонение:

Приведенные затраты на исправное состояние:

Неисправное состояние:

Математическое ожидание: ;

Рассмотрим классическую схему принятия решений в условиях неопределённости.

Напомним, что финансовой называется операция, начальное и конечное состояния которой имеют денежную оценку, и цель проведения которой заключается в максимизации дохода – разности между конечной и начальной оценками. Почти всегда финансовые операции проводятся в условиях неопределённости и поэтому их результат невозможно предсказать заранее. Проводящий операцию называется ЛПР – Лицо, Принимающее Решение (во многих случаях ЛПР – это инвестор). Операция называется рискованной , если она может иметь несколько исходов, не равноценных для ЛПР.

Задача. Рассмотрим 3 операции с одним и тем же множеством двух исходов – альтернатив А и В, которые характеризуют доходы, получаемые ЛПР.

Все 3 операции рискованные. Для 1-ой и 2-ой это очевидно, но почему считается рискованной 3-я операция? Ведь она сулит только положительные доходы ЛПР? Рассматривая возможные исходы 3-ей операции, видим, что можем получить доход в размере 20 ед., поэтому возможность получения дохода в 15 ед. рассматривается как неудача, как риск недополучить 5 ед. дохода.

Как оценить финансовую операцию с точки зрения её доходности и риска? На этот вопрос не так просто ответить, главным образом из-за многогранности понятия риска. Существует несколько разных способов такой оценки. Рассмотрим один из таких подходов.

Матрицы последствий и рисков. Пусть рассматривается вопрос о проведении финансовой операции, имеющей несколько возможных исходов. В связи с этим проводится анализ возможных решений и их последствий. Предположим, что ЛПР рассматривает m возможных решений: i = 1,…, m . Ситуация неопределённа, известно лишь, что имеет место один из n вариантов: j = 1,…, n . Если будет принято i -тое решение, а ситуация сложится j -тая, то доход, полученный ЛПР будет равен q ij . Матрица Q = (q ij ) называется матрицей последствий (возможных решений ). Какое же решение нужно принять ЛПР? В этой неопределённой ситуации могут быть высказаны лишь некоторые рекомендации. Они не обязательно будут приняты ЛПР. Многое будет зависеть, например, от его склонности к риску. Но как оценить риск в данной схеме? Допустим, мы хотим оценить риск, который несёт i -тое решение. Нам неизвестна реальная ситуация, но если бы мы её знали, то выбрали бы наилучшее решение, т.е. приносящее наибольший доход. Если ситуация j -тая, то принимается решение, дающее доход . Значит, принимаяi -тое решение, мы рискуем получить не , а толькоq ij , т.е. принятие i -того решения несёт риск недобрать . МатрицуR = () называютматрицей рисков .

Задача. Пусть есть матрица последствий:.

Составим матрицу рисков:.

Ситуация полной неопределённости характеризуется отсутствием какой бы то ни было дополнительной информации (например, о вероятностях тех или иных вариантов реальной ситуации). Какие же существуют правила-рекомендации по принятию решений в этой ситуации?

Правило Вальда (правило крайнего пессимизма ). Если руководствоваться этим критерием, надо всегда ориентироваться на худшие условия, зная наверняка, что «хуже этого не будет». Рассматривая i -тое решение, будем полагать, что на самом деле ситуация складывается самая плохая, т.е. приносящая самый малый доход: . Теперь выберем решениеi 0 с наибольшим :. В задаче имеемИз этих чисел находим максимальное – 3. Правило Вальда рекомендует принять 3-е решение. Очевидно, такой подход – «перестраховочный», естественный для того, кто очень боится проиграть.

Правило Сэвиджа (правило минимального риска ). Этот критерий тоже крайне пессимистический, но при выборе оптимальной стратегии советует ориентироваться не на величину дохода, а на риск. При применении этого правила анализируется матрица рисков R = ().Рассматриваяi -тое решение, будем полагать, что на самом деле складывается ситуация максимального риска . Теперь выберем решениеi 0 с наименьшим :. В задаче имеемВ задаче имеемИз этих чисел находим минимальное – 5. Правило Сэвиджа рекомендует принять 3-е решение. Сущность такого подхода в том, чтобы всячески избегать большого риска при принятии решения.

Правило Гурвица (пессимизма-оптимизма ). Этот критерий рекомендует при выборе решения не руководствоваться ни крайним пессимизмом, ни крайним оптимизмом. Принимается решение, при котором достигается максимум , где- «коэффициент пессимимзма». Значениевыбирается из субъективных соображений. Еслиприближается к 1, правило Гурвица приближается к правилу Вальда, при приближениик 0 правило Гурвица приближается к правилу «крайнего оптимизма», рекомендующему выбирать ту стратегию, при которой выигрыш в строке максимален. В задаче прикритерий Гурвица рекомендует 2-ое решение.

Предположим, что в рассматриваемой схеме известны вероятности того, что реальная ситуация развивается по вариантуj . Такое положение называется частичной неопределённостью . Какие рекомендации по принятию решения в этом случае? Можно руководствоваться одним из следующих правил.

Правило максимизации среднего ожидаемого дохода. Доход, получаемый компанией при реализации i -ого решения, является случайной величиной с законом распределения

q i1

q i2

q in

Математическое ожидание этой случайной величины и есть средний ожидаемый доход. Критерий рекомендует принять решение, максимизирующее средний ожидаемый доход.

Задача. Пусть в предыдущей задаче ТогдаМаксимальный средний ожидаемый доход равен 7, что соответствует 3-ему решению.

Правило минимизации среднего ожидаемого риска. Риск компании при реализации i -ого решения является случайной величиной с законом распределения

r i1

r i2

r in

Математическое ожидание этой случайной величины и есть средний ожидаемый риск. Критерий рекомендует принять решение, минимизирующее средний ожидаемый риск.

Метод минимального риска. Этот метод был развит в связи с задачами радиолокации, но может вполне успешно использоваться в задачах технической диагностики.

Пусть проводится измерение параметра х (например, уровня вибраций изделия) и на основании данных измерений требуется сделать вывод о возможности продолжения эксплуатации (диагноз - исправное состояние) или о направлении изделия в ремонт (диагноз - неисправное состояние).

На рис. 1 даны значения плотности вероятности диагностического параметра х для двух состояний.

Пусть установлена контрольная норма для уровня вибраций .

В соответствии с этой нормой принимают:

Знак означает, что объект с уровнем вибраций х относят к данному состоянию.

Из рис. 1 следует, что любой выбор величины связан с определенным риском, так как кривые пересекаются.

Существуют два вида риска: риск «ложной тревоги», когда исправное изделие признают неисправным, и риск «пропуска цели», когда неисправное изделие считают годным.

В теории статистического контроля их называют риском поставщика и риском приемщика или ошибками первого и второго рода.

При данном вероятность ложной тревоги

и вероитность пропуска цели

Задача теории статистических решений состоит в выборе оптимального значения

По способу минимального риска рассматривается общая стоимость риска

где - «цена» ложной тревоги; - «цена» пропуска цели; - априорные вероятности диагнозов (состояний), определяемые по предварительным

Рис. 1. Плотность вероятности диагностического признака

статистическим данным. Величина представляет собой «среднее значение» потери при ошибочном решении.

Из необходимого условия минимума

получаем

Можно показать, что для одномодальных распределений условие (23) всегда обеспечивает минимум величины Если стоимость ошибочных решений одинакова, то

Последнее соотношение минимизирует общее число ошибочных решений. Оно вытекает также из метода Байеса.

Метод Неймана-Пирсона. В этом методе исходят из условия минимума вероятности пропуска дефекта при допустимом уровне вероятности ложной тревоги.

Таким образом, вероятность ложной тревоги

где - допустимый уровень ложной тревоги.

В рассматриваемых однопараметрических задачах минимум вероятности пропуска цели достигается при

Последнее условие и определяет граничное значение параметра (значение

При назначении величины а учитывают следующее:

1) число снимаемых с эксплуатации изделий должно превышать ожидаемое число дефектных изделий в силу неизбежных погрешностей метода оценки состояния;

2) принимаемое значение ложной тревоги не должно, без крайней необходимости, нарушать нормальную эксплуатацию или приводить к большим экономическим потерям.

Дать понятие о статистических решениях для одного диагностического параметра и для принятия решения при наличии зоны неопределенности. Разъяснить процесс принятия решения в различных ситуациях. В чем состоит связь границ принятия решения с вероятностями ошибок первого и второго рода Рассматриваемые методы относятся к статистическим....


Поделитесь работой в социальных сетях

Если эта работа Вам не подошла внизу страницы есть список похожих работ. Так же Вы можете воспользоваться кнопкой поиск


Лекция 7

Тема. МЕТОДЫ СТАТИСТИЧЕСКИХ РЕШЕНИЙ

Цель. Дать понятие о статистических решениях для одного диагностического параметра и для принятия решения при наличии зоны неопределенности.

Учебная. Разъяснить процесс принятия решения в различных ситуациях.

Развивающая. Развивать логическое мышление и естественное - научное мировоззрение.

Воспитательная . Воспитывать интерес к научным достижениям и открытиям в отрасли телекоммуникации.

Межпредметные связи:

Обеспечивающие: информатика, математика, вычислительная техника и МП , системы программирования.

Обеспечиваемые: Стажерская практика

Методическое обеспечение и оборудование:

Методическая разработка к занятию.

Учебный план.

Учебная программа

Рабочая программа.

Инструктаж по технике безопасности.

Технические средства обучения: персональный компьютер.

Обеспечение рабочих мест:

Рабочие тетради

Ход лекции.

Организационный момент.

Анализ и проверка домашней работы

Ответьте на вопросы:

  1. Что позволяет определить формула Байеса?
  2. В чем состоят основы метода Байеса? Приведите формулу. Дайте определение точного смысла всех входящих в эту формулу величин.
  3. Что означает, что реализация некоторого комплекса признаков K * является детерминирующей?
  4. Объясните принцип формирования диагностической матрицы.
  5. Что означает решающее правило принятия?
  6. Дайте определение методу последовательного анализа.
  7. В чем состоит связь границ принятия решения с вероятностями ошибок первого и второго рода?

План лекции

Рассматриваемые методы относятся к статистическим. В методах статистических решений решающее правило выбирается исходя из некоторых условий оптимальности, например из условия минимума риска. Возникшие в математической статистике как методы проверки статистических гипотез (работы Неймана и Пирсона), рассматриваемые методы нашли широкое применение в радиолокации (обнаружение сигналов на фоне помех), радиотехнике, общей теории связи и других областях. Методы статистических решений успешно используются в задачах технической диагностики.

СТАТИСТИЧЕСКИЕ РЕШЕНИЯ ДЛЯ ОДНОГО ДИАГНОСТИЧЕСКОГО ПАРАМЕТРА

Если состояние системы характеризуется одним параметром, то система имеет одномерное пространство признаков. Разделение производится на два класса (дифференциальная диагностика или дихотомия (раздвоенность, последовательное деление на две части, не связанные между собой. ) ).

Рис.1 Статистические распределения плотности вероятности диагностического параметра х для исправного D 1 и дефектного D 2 состояний

Существенно, что области исправного D 1 и дефектного D 2 состояний пересекаются и потому принципиально невозможно выбрать значение х 0 , при котором не было бы ошибочных решений. Задача состоит в том, чтобы выбор х 0 был в некотором смысле оптимальным, например давал наименьшее число ошибочных решений.

Ложная тревога и пропуск цели (дефекта). Эти встречавшиеся ранее термины явно связаны с радиолокационной техникой, но они легко интерпретируются в задачах диагностики.

Ложной тревогой называется случай, когда принимается решение о наличии дефекта, но в действительности система находится в исправном состоянии (вместо D 1 принимается D 2 ).

Пропуск цели (дефекта) — принятие решения об исправном состоянии, тогда как система содержит дефект (вместо D 2 принимается D 1 ).

В теории контроля эти ошибки называются риском поставщика и риском заказчика . Очевидно, что эти двоякого рода ошибки могут иметь различные последствия или различные целы.

Вероятность ложной тревоги равна вероятности произведения двух событий: наличие исправного состояния и значения х > х 0 .

Средний риск. Вероятность принятия ошибочного решения слагается из вероятностей ложной тревоги и пропуска дефекта (математическое ожидание) риска.

Разумеется, цена ошибки имеет условное значение, но она должна учесть предполагаемые последствия ложной тревоги и пропуска дефекта. В задачах надежности стоимость пропуска дефекта обычно существенно больше стоимости ложной тревоги.

Метод минимального риска . Вероятность принятия ошибочного решения определяется как минимизация точки экстремума среднего риска ошибочных решений при максимуме правдоподобия т.е. проводится расчет минимального риска происхождения события при налички информации о максимально подобных событиях.

рис. 2. Точки экстремума среднего риска ошибочных решений

Рис. 3. Точки экстремума для двугорбых распределений

Отношение плотностей вероятностей распределения х при двух состояниях называется отношением правдоподобия.

Напомним, что диагноз D 1 соответствует исправному состоянию, D 2 — дефектному состоянию объекта; С 21 — цена ложной тревоги, С 12 — цена пропуска цели (первые индекс — принятое состояние, второй — действительное); С 11 < 0, С 22 < 0 — цены правильных решений (условные выигрыши). В большинстве практических задач условные выигрыши (поощрения) для правильных решений не вводятся.

Часто оказывается удобным рассматривать не отношение правдоподобия, а логарифм этого отношения. Это не изменяет результата, так как логарифмическая функция возрастает монотонно вместе со своим аргументом. Расчет для нормального и некоторых других распределений при использовании логарифма отношения правдоподобия оказывается несколько проще. Условие минимума риска можно получить из других соображений, которые окажутся важными в дальнейшем.

Метод минимального числа ошибочных решений .

Вероятность ошибочного решения для решающего правила

В задачах надежности рассматриваемый метод часто дает «неосторожные решения», так как последствия ошибочных решений существенно различаются между собой. Обычно цена пропуска дефекта существенно выше цены ложной тревоги. Если указанные стоимости приблизительно одинаковы (для дефектов с ограниченными последствиями, для некоторых задач контроля и др.) то применение метода вполне оправдано.

Метод минимакса предназначен для ситуации, когда отсутствуют предварительные статистические сведения о вероятности диагнозов D 1 и D 2 . Рассматривается «наихудший случай», т. е. наименее благоприятные значения Р 1 и Р 2 , приводящие к наибольшему значению (максимуму) риска.

Можно показать для одномодальных распределений, что величина риска становится минимаксной (т. е. минимальной среди максимальных значений, вызванных «неблагоприятной» величиной Pi ). Отметим, что при Р 1 = 0 и Р 1 = 1 риск принятия ошибочного решения отсутствует, так как ситуация не имеет неопределенности. При Р 1 = 0 (все изделия неисправны) вытекает х 0 → -оо и все объекты действительно признаются неисправными; при Р 1 = 1 и Р 2 = 0 х 0 → +оо и в соответствии с имеющейся ситуацией все объекты классифицируются как исправные.

Для промежуточных значений 0 < Pi < 1 риск возрастает и при P 1= P 1* становится максимальным. Рассматриваемым методом выбирают величину х 0 таким образом, чтобы при наименее благоприятных значениях Pi потери, связанные с ошибочными решениями, были бы минимальными.

рис . 4. Определение граничного значения диагностического параметра по методу минимакса

Метод Неймана—Пирсона . Как уже указывалось, оценки стоимости ошибок часто неизвестны и их достоверное определение связано с большими трудностями. Вместе с тем ясно, что во всех с л у чаях желательно при определенном (допустимом) уровне одной из ошибок минимизировать значение другой. Здесь центр проблемы переносится на обоснованный выбор допустимого уровня ошибок с помощью предыдущего опыта или интуитивных соображений.

По методу Неймана—Пирсона минимизируется вероятность пропуска цели при заданном допустимом уровне вероятности ложной тревоги. Таким образом, вероятность ложной тревоги

где А — заданный допустимый уровень вероятности ложной тревоги; Р 1 — вероятность исправного состояния.

Отметим, что обычно это условие относят к условной вероятности ложной тревоги (множитель Р 1 отсутствует). В задачах технической диагностики значения Р 1 и Р 2 в большинстве случаев известны по статистическим данным.

Таблица 1 Пример - Результаты расчета по методам статистических решений

№ п/п

Метод

Граничное значение

Вероятность ложной тревоги

Вероятность пропуска дефекта

Средний риск

Метод минимального риска

7,46

0,0984

0,0065

0,229

Метод минимального числа ошибок

9,79

0,0074

0,0229

0,467

Метод минимакса

Основной вариант

5,71

0,3235

0,0018

0,360

2 вариант

7,80

0,0727

0,0081

0,234

Метод Неймана—Пирсона

7,44

0,1000

0,0064

0,230

Метод наибольшего правдоподобия

8,14

0,0524

0,0098

0,249

Из сопоставления видно, что метод минимального числа ошибок дает неприемлемое решение, так как цены ошибок существенно различны. Граничное значение по этому методу приводит к значительной вероятности пропуска дефекта. Метод минимакса в основном варианте требует очень большого снятия с эксплуатации исследуемых устройств(примерно 32%), так как исходит из наименее благоприятного случая (вероятность неисправного состояния Р 2 = 0,39). Применение метода может быть оправданным, если отсутствуют даже косвенные оценки вероятности неисправного состояния. В рассматриваемом примере удовлетворительные результаты получаются по методу минимального риска.

  1. СТАТИСТИЧЕСКИЕ РЕШЕНИЯ ПРИ НАЛИЧИИ ЗОНЫ НЕОПРЕДЕЛЕННОСТИ И ДРУГИЕ ОБОБЩЕНИЯ

Правило решения при наличии зоны неопределенности.

В некоторых случаях, когда требуется высокая надежность распознавания (большая стоимость ошибок пропуска цели и ложной тревоги), целесообразно ввести зону неопределенности (зону отказа от распознавания). Правило решения будет следующим

при отказ от распознавания.

Разумеется, отказ от распознавания является нежелательным событием. Он свидетельствует, что имеющейся информации недостаточно для принятия решения и нужны дополнительные сведения.

рис. 5. Статистические решения при наличии зоны неопределенности

Определение среднего риска . Величина среднего риска при наличии зоны отказа от распознавания может быть выражена следующим равенством

где C o — цена отказа от распознавания.

Отметим, что С о > 0, иначе задача теряет смысл («вознаграждение» за отказ от распознавания). Точно так же С 11 < 0, С 22 < 0, так как правильные решения не должны «штрафоваться».

Метод минимального риска при наличии зоны неопределенности . Определим границы области принятия решения, исходя из минимума среднего риска.

Если не поощрять правильные решения (С 11 = 0, С 22 = 0) и не платить за отказ от распознавания (С 0 = 0), то область неопределенности будет занимать всю область изменения параметра.

Наличие зоны неопределенности дает возможность обеспечить заданные уровни ошибок за счет отказа от распознавания в «сомнительных» случаях

Статистические решения для нескольких состояний. Выше были рассмотрены случаи, когда статистические решения принимались д ля различения двух состояний (дихотомия). Принципиально такая процедура позволяет провести разделение на n состояний, каждый раз объединяя результаты для состояния D 1 и D 2 . Здесь под D 1 понимаются любые состояния, соответствующие условию «не D 2 ». Однако в некоторых случаях представляет интерес рассмотреть вопрос и в прямой постановке — статистические решения для классификации n состояний.

Выше рассматривались случаи, когда состояние системы (изделия) характеризовалось одним параметром х и соответствующим (одномерным) распределением. Состояние системы характеризуется диагностическими параметрами х 1 х 2 , ..., х n или вектором х:

х= (х 1 х 2 ,...,х n ).

М етод минимального риска.

Наиболее просто обобщаются на многомерные системы методы минимального риска и его частные случаи (метод минимального числа ошибочных решений, метод наибольшего правдоподобия). В случаях, когда в методе статистического решения требуется определение границ области принятия решения, расчетная сторона задачи существенно осложняется (методы Неймана—Пирсона и минимакса).

Домашнее задание: § конспект.

Закрепление материала:

Ответьте на вопросы:

  1. Что называют ложной тревогой?
  2. Что подразумевает пропуск цели (дефекта)?
  3. Дайте объяснение риску поставщика и риску заказчика.
  4. Приведите формулу метода минимального числа ошибочных решений. Дайте определение неосторожного решения.
  5. Для каких случаев предназначен метод минимакса?
  6. Метод Неймана—Пирсона. Объясните его принцип.
  7. Для каких целей применяется зона неопределенности?

Литература:

Амренов С. А. «Методы контроля и диагностики систем и сетей связи» КОНСПЕКТ ЛЕКЦИЙ -: Астана, Казахский государственный агротехнический университет, 2005 г.

И.Г. Бакланов Тестирование и диагностика систем связи. - М.: Эко-Трендз, 2001.

Биргер И. А. Техническая диагностика.— М.: «Машиностроение», 1978.—240,с, ил.

АРИПОВ М.Н, ДЖУРАЕВ Р.Х., ДЖАББАРОВ Ш.Ю. «ТЕХНИЧЕСКАЯ ДИАГНОСТИКА ЦИФРОВЫХ СИСТЕМ» -Ташкент, ТЭИС, 2005

Платонов Ю. М., Уткин Ю. Г. Диагностика, ремонт и профилактика персональных компьютеров. -М.: Горячая линия - Телеком, 2003.-312 с: ил.

М.Е.Бушуева, В.В.Беляков Диагностика сложных технических систем Труды 1-го совещания по проекту НАТО SfP-973799 Semiconductors . Нижний Новгород, 2001

Малышенко Ю.В. ТЕХНИЧЕСКАЯ ДИАГНОСТИКА часть I конспект лекций

Платонов Ю. М., Уткин Ю. Г. Диагностика зависания и неисправностей компьютера/Серия «Техномир». Ростов-на-Дону: «Феникс», 2001. — 320 с.

PAGE \* MERGEFORMAT 2

Другие похожие работы, которые могут вас заинтересовать.вшм>

21092. Экономические методы принятия предпринимательских решений на примере ТОО «Норма- 2005» 127.94 KB
Управленческие решения: сущность требования механизм разработки. Свою управленческую деятельность руководитель реализует через решения. Достижение поставленной цели исследования потребовало решения следующих задач: теоретического обоснования экономических методов принятия решений в системе предпринимательства; структуризации и внутреннего управленческого обследования на основе анализа внешней и внутренней среды исследуемого предприятия; анализа использования информации экономических результатов...
15259. Методы, применяемые в анализе синтетических аналогов папаверина и многокомпонентных лекарственных форм на их основе 3.1. Хроматографические методы 3.2. Электрохимические методы 3.3. Фотометрические методы Заключение Список л 233.66 KB
Дротаверина гидрохлорид. Дротаверина гидрохлорид является синтетическим аналогом папаверина гидрохлорида а с точки зрения химического строения является производным бензилизохинолина. Дротаверина гидрохлорид принадлежит к группе лекарственных средств обладающих спазмолитической активностью спазмолитик миотропного действия и является основным действующим веществом препарата но-шпа. Дротаверина гидрохлорид Фармакопейная статья на дротаверина гидрохлорид представлена в Фармакопее издания.
2611. ПРОВЕРКА СТАТИСТИЧЕСКИХ ГИПОТИЗ 128.56 KB
Например гипотеза простая; а гипотеза: где –сложная гипотеза потому что она состоит из бесконечного множества простых гипотез. Классический метод проверки гипотез В соответствии с поставленной задачей и на основании выборочных данных формулируется выдвигается гипотеза которая называется основной или нулевой. Одновременно с выдвинутой гипотезой рассматривается противоположная ей гипотеза которая называется конкурирующей или альтернативной. Поскольку гипотеза для генеральной совокупности...
7827. Тестирование статистических гипотез 14.29 KB
Для тестирования гипотезы существует два способа сбора данных – наблюдение и эксперимент. Думаю определить какое из данных наблюдений является научным не составит труда. Шаг третий: сохранение результатов Как я уже упоминала в лекции первой один из языков на которых говорит биология – это язык баз данных. Из этого вытекает то какой собственно база данных должна быть и какой задаче она отвечает.
5969. Статистическое исследование и обработка статистических данных 766.04 KB
В курсовой рассматривается следующие темы: статистическое наблюдение, статистическая сводка и группировка, формы выражения статистических показателей, выборочное наблюдение, статистическое изучение взаимосвязи социально-экономических явлений и динамики социально-экономических явлений, экономические индексы.
19036. 2.03 MB
13116. Система сбора и обработки статистических данных «Метеонаблюдения» 2.04 MB
Работы с базами данных и СУБД позволяют значительно качественнее организовать работу сотрудников. Простота в эксплуатации и надежность хранения данных позволяют практически совсем отказаться от ведения бумажного учета. Значительно ускоряется работа с отчетной и статистической информацией калькуляцией данных.
2175. Анализ области решений 317.39 KB
9й вид UML диаграмм диаграммы вариантов использования см. В этом курсе мы не будем разбирать диаграммы UML в деталях а ограничимся обзором их основных элементов необходимым для общего понимания смысла того что изображено на таких диаграммах. Диаграммы UML делятся на две группы статические и динамические диаграммы. Статические диаграммы Статические диаграммы представляют либо постоянно присутствующие в системе сущности и связи между ними либо суммарную информацию о сущностях и связях либо сущности и связи существующие в какойто...
1828. Критерий принятия решений 116.95 KB
Критерий принятия решений – это функция, выражающая предпочтения лица, принимающего решения (ЛПР), и определяющая правило, по которому выбирается приемлемый или оптимальный вариант решения.
10569. Классификация управленческих решений 266.22 KB
Классификация управленческих решений. Разработка управленческого решения. Особенности управленческих решений Обыденные и управленческие решения. Обыденные решения это решения принимаемые людьми в повседневной жизни.

ТЕХНИЧЕСКАЯ ДИАГНОСТИКА ЭЛЕКТРОННЫХ СРЕДСТВ

УДК 678.029.983

Составитель: В.А. Пиккиев.

Рецензент

Кандидат технических наук, доцент О.Г. Бондарь

Техническая диагностика электронных средств : методические рекомендации для проведения практических занятий по дисциплине «Техническая диагностика электронных средств»/ Юго-Зап. гос. ун-т.; сост.: В.А. Пиккиев, Курск, 2016. 8с.: ил.4, табл.2, прилож.1. Библиогр.:с. 9 .

Методические указания для проведения практических занятий предназначены для студентов направления подготовки 11.03.03 «Конструирование и технология электронных средств».

Подписано в печать. Формат 60х84 1\16 .

Усл. печ. л. Уч.-изд.л. Тираж 30 экз. Заказ. Бесплатно

Юго-Западный государственный университет.

ВВЕДЕНИЕ. ЦЕЛЬ И ЗАДАЧИ ИЗУЧЕНИЯ ДИСЦИПЛИНЫ.
1. Практическое занятие № 1. Метод минимального числа ошибочных решений
2. Практическое занятие № 2. Метод минимального риска
3. Практическое занятие № 3. Метод Байеса
4. Практическое занятие № 4. Метод наибольшего правдоподобия
5. Практическое занятие № 5. Метод минимакса
6. Практическое занятие № 6. Метод Неймана–Пирсона
7. Практическое занятие № 7. Линейные разделяющие функции
8. Практическое занятие № 8. Обобщенный алгоритм нахождения разделяющей гиперплоскости


ВВЕДЕНИЕ. ЦЕЛЬ И ЗАДАЧИ ИЗУЧЕНИЯ ДИСЦИПЛИНЫ .

Техническая диагностика рассматривает задачи диагностирования, принципы организации систем тестового и функционального диагноза, методы и процедуры алгоритмов диагноза для проверки неисправности, работоспособности и правильности функционирования, а также для поиска неисправностей различных технических объектов. Основное внимание уделяется логическим аспектам технической диагностики при детерминированных математических моделях диагноза.

Цель дисциплины состоит в освоении методов и алгоритмов технической диагностики.

Задачей курса является подготовка технических специалистов освоивших:

Современные методы и алгоритмы технической диагностики;

Модели объектов диагностирования и неисправностей;

Алгоритмы диагностирования и тесты;

Моделирование объектов;

Аппаратуру систем поэлементного диагностирования;

Сигнатурный анализ;

Системы автоматизации диагностирования РЭА и ЭВС;

Навыки разработки и построения моделей элементов.

Предусмотреные в учебном плане практические занятия, позволяют формировать у студентов профессиональные компетенции аналитического и творческого мышления путем приобретения практических навыков диагностики электронных средств.

Практические занятия предусматривают работу с прикладными задачами разработки алгоритмов поиска неисправностей электронных устройств и построению контролирующих тестов с целью их дальнейшего использования при моделировании функционирования этих устройств.

ПРАКТИЧЕСКОЕ ЗАНЯТИЕ № 1

МЕТОД МИНИМАЛЬНОГО ЧИСЛА ОШИБОЧНЫХ РЕШЕНИЙ.

В задачах надежности рассматриваемый метод часто дает «неосторожные решения», так как последствия ошибочных решений существенно различаются между собой. Обычно цена пропуска дефекта существенно выше цены ложной тревоги. Если указанные стоимости приблизительно одинаковы (для дефектов с ограниченными последствиями, для некоторых задач контроля и др.), то применение метода вполне оправдано.

Вероятность ошибочного решения определяется так

D 1 - диагноз исправного состояния;

D 2 - диагноз дефектного состояния;

P 1 -вероятность 1 диагноза;

P 2 - вероятность 2-го диагноза;

x 0 - граничное значение диагностического параметра.

Из условия экстремума этой вероятности получаем

Условие минимума дает

Для одномодальных (т. е. содержат не более одной точки максимума) распределений неравенство (4) выполняется, и минимум вероятности ошибочного решения получается из соотношения (2)

Условие выбора граничного значения (5) называется условием Зигерта–Котельникова (условием идеального наблюдателя). К этому условию приводит также метод Байеса.

Решение x ∈ D1 принимается при

что совпадает с равенством (6).

Рассеяние параметра (величина среднеквадратичного отклонения) принимается одинаковым.

В рассматриваемом случае плотности распределений будут равны:

Таким образом, полученные математические модели(8-9) могут быть использованы для диагностики ЭС.

Пример

Диагностика работоспособности жестких дисков осуществляется по количеству битых секторов (Reallocated sectors). Фирма Western Digital при производстве ЖД модели “My Passport” использует следующие допуски: Исправными считаются диски у которых среднее значение составляет х 1 = 5 на единицу объема и среднеквадратичное отклонение σ 1 = 2 . При наличии дефекта магнитного напыления (неисправное состояние) эти значения равны х 2 = 12, σ 2 = 3 . Распределения предполагаются нормальными.

Требуется определить предельное количество неисправных секторов, выше которого жесткий диск подлежит снятию с эксплуатации и разборке (во избежание опасных последствий). По статистическим данным, неисп­равное состояние магнитного напыления наблюдается у 10% ЖД.

Плотности распределения:

1. Плотность распределения для исправного состояния:

2. Плотность распределения для дефектного состояния:

3. Разделим плотности состояния и приравняем к вероятностям состояний:

4. Прологарифмируем данное равенство и найдем предельное количество неисправных секторов:

Это уравнение имеет положительный корень x 0 =9,79

Критическое количество битых секторов равно 9 на единицу объема.

Варианты задания

№ п/п х 1 σ 1 х 2 σ 2

Вывод : Использование данного метода позволяет принимать решение без оценки последствий ошибок, из условий задачи.

Недостатком является то, что указанные стоимости приблизительно одинаковы.

Применение данного метода, распространено в приборостроение и машиностроении.

Практическое занятие № 2

МЕТОД МИНИМАЛЬНОГО РИСКА

Цель работы: изучение метода минимального риска для диагностики технического состояния ЭС.

Задачи работы :

Изучить теоретические основы метода минимального риска;

Провести практические расчеты;

Сделать выводы по использованию метода минимального риска ЭС.

Теоретические пояснения .

Вероятность принятия ошибочного решения слагается из вероятностей ложной тревоги и пропуска дефекта. Если приписать «цены» этим ошибкам, то получим выражение для среднего риск.

Где D1- диагноз исправного состояния; D2- диагноз дефектного состояния; P1-вероятность 1 диагноза; P2- вероятность 2-го диагноза; x0- граничное значение диагностического параметра; С12- стоимость ложной тревоги.

Разумеется, цена ошибки имеет условное значение, но она должна учесть предполагаемые последствия ложной тревоги и пропуска дефекта. В задачах надежности стоимость пропуска дефекта обычно существенно больше стоимости ложной тревоги (C12 >> C21). Иногда вводится цена правильных решений С11 и С22, которая для сравнения со стоимостью потерь (ошибок) принимается отрицательной. В общем случае средний риск (ожидаемая величина потери) выражается равенством

Где С11, С22 - цена правильных решений.

Величина x, предъявляемая для распознавания, является случайной и потому равенства (1) и (2) представляют собой среднее значение (математическое ожидание) риска.

Найдем граничное значение x0 из условия минимума среднего риска. Дифференцируя (2) по x0 и приравнивая производную нулю, получим сначала условие экстремума

Это условие часто определяет два значения x0, из которых одно соответствует минимуму, второе – максимуму риска (рис. 1). Соотношение (4) является необходимым, но недостаточным условием минимума. Для существования минимума R в точке x = x0 вторая производная должна быть положительной (4.1.), что приводит к следующему условию

(4.1.)

относительно производных плотностей распределений:

Если распределения f (x, D1) и f(x, D2) являются, как обычно, одномодальными (т. е. содержат не более одной точки максимума), то при

Условие (5) выполняется. Действительно, в правой части равенства стоит положительная величина, а при x>x1 производная f "(x/D1), тогда как при x

В дальнейшем под x0 будем понимать граничное значение диагностического параметра, обеспечивающее по правилу (5) минимум среднего риска. Будем также считать распределения f (x / D1) и f (x / D2) одномодальными («одногорбыми»).

Из условия (4) следует, что решение об отнесении объекта x к состоянию D1 или D2 можно связать с величиной отношения правдоподобия. Напомним, что отношение плотностей вероятностей распределения x при двух состояниях называется отношением правдоподобия.

По методу минимального риска принимается следующее решение о состоянии объекта, имеющего данное значение параметра x:

(8.1.)

Эти условия вытекают из соотношений (5) и (4). Условие (7) соответствует x< x0, условие (8) x > x0. Величина (8.1.) представляет собой пороговое значение для отношения правдоподобия. Напомним, что диагноз D1 соответствует исправному состоянию, D2 – дефектному состоянию объекта; C21 – цена ложной тревоги; C12 – цена пропуска цели (первый индекс – принятое состояние, второй – действительное); C11 < 0, C22 – цены правильных решений (условные выигрыши). В большинстве практических задач условные выигрыши (поощрения) для правильных решений не вводятся и тогда

Часто оказывается удобным рассматривать не отношение правдоподобия, а логарифм этого отношения. Это не изменяет результата, таккак логарифмическая функция возрастает монотонно вместе со своимаргументом. Расчет для нормального и некоторых других распределений при использовании логарифма отношения правдоподобия оказывается несколько проще. Рассмотрим случай, когда параметр x имеет нормальное распределение при исправном D1 и неисправном D2 состояниях. Рассеяние параметра (величина среднеквадратичного отклонения) принимается одинаковым. В рассматриваемом случае плотности распределений

Внося эти соотношения в равенство (4), получаем после логарифмирования

Диагностика работоспособности флэш накопителей осуществляется по количеству битых секторов (Reallocated sectors). Фирма Toshiba TransMemory при производстве модели “UD-01G-T-03” использует следующие допуски: Исправными считаются накопители у которых среднее значение составляет х1 = 5 на единицу объема. Среднеквадратичное отклонение примем равным ϭ1 = 2.

При наличии дефекта NAND памяти эти значения равны х2 = 12, ϭ2 = 3 . Распределения предполагаются нормальными. Требуется определить предельное количество неисправных секторов, выше которого жесткий диск подлежит снятию с эксплуатации. По статистическим данным, неисправное состояние наблюдается у 10% флэш накопителей.

Примем, что отношение стоимостей пропуска цели и ложной тревоги , и откажемся от «вознаграждения» правильных решений (С11=С22=0). Из условия (4) получаем

Варианты задания:

Вар. X 1 мм. X 2 мм. б1 б2

Вывод

Метод позволяет оценить вероятность принятия ошибочного решения определяется как минимизация точки экстремума среднего риска ошибочных решений при максимуме правдоподобия, т.е. проводится расчет минимального риска происхождения события при наличии информации о максимально подобных событиях.

ПРАКТИЧЕСКАЯ РАБОТА № 3

МЕТОД БАЙЕСА

Среди методов технической диагностики метод, основанный на обобщенной формуле Байеса, занимает особое место благодаря простоте и эффективности. Разумеется, метод Байеса имеет недостатки: большой объем предварительной информации, «угнетение» редко встречающихся диагнозов и др. Однако в случаях, когда объем статистических данных позволяет применить метод Байеса, его целесообразно использовать как один из наиболее надежных и эффективных.

Пусть имеется диагноз D i и простой признак k j , встречающийся при этом диагнозе, то вероятность совместного появления событий (наличие у объекта состояния D i и признака k j)

Из этого равенства вытекает формула Байеса

Очень важно определить точный смысл всех входящих в эту формулу величин:

P(D i) – вероятность диагноза D i , определяемая по статистическим данным (априорная вероятность диагноза). Так, если предварительно обследовано N объектов и у N i объектов имелось состояние D i , то

P (k j / D i )– вероятность появления признакаk j у объектов с состоянием D i . Если среди N i объектов, имеющих диагноз D i , у N ij , проявился признак k j , то

P (k j )– вероятность появления признакаk j во всех объектах независимо от состояния (диагноза) объекта. Пусть из общего числа N объектов признак k j был обнаружен у N j объектов, тогда

Для установления диагноза специальное вычисление P(k j) не требуется. Как будет ясно из дальнейшего, значения P(D i) и P(k j /D v), известные для всех возможных состояний, определяют величину P(k j).

В равенстве (2) P(D i / k j) – вероятность диагноза D i после того, как стало известно наличие у рассматриваемого объекта признака k j (апостериорная вероятность диагноза).

Обобщенная формула Байеса относится к случаю, когда обследование проводится по комплексу признаков K, включающему признаки k 1 , k 2 , …, k ν . Каждый из признаков k j имеет m j разрядов (k j1 , k j2 , …, k js , …, k jm). В результате обследования становится известной реализация признака

и всего комплекса признаков К * . Индекс * , как и раньше, означает конкретное значение (реализацию) признака. Формула Байеса для комплекса признаков имеет вид

где P(D i / K *) – вероятность диагноза D i после того, как стали известны результаты обследования по комплексу признаков K; P(D i) – предварительная вероятность диагноза D i (по предшествующей статистике).

Формула (7) относится к любому из n возможных состояний (диагнозов) системы. Предполагается, что система находится только в одном из указанных состояний и потому

В практических задачах нередко допускается возможность существования нескольких состояний A 1 , …, A r , причем некоторые из них могут встретиться в комбинации друг с другом. Тогда в качестве различных диагнозов D i следует рассматривать отдельные состояния D 1 = A 1 , …, D r = A r и их комбинации D r+1 = A 1 /\ A 2 .

Перейдем к определению P (K * / D i ) . Если комплекс признаков состоит из н признаков, то

где k * j = k js – разряд признака, выявившийся в результате обследования. Для диагностически независимых признаков;

В большинстве практических задач, особенно при большом числе признаков, можно принимать условие независимости признаков даже при наличии существенных корреляционных связей между ними.

Вероятность появления комплекса признаков K *

Обобщенная формула Байеса может быть записана

где P(K * / D i) определяется равенством (9) или (10). Из соотношения (12) вытекает

что, разумеется, и должно быть, так как один из диагнозов обязательно реализуется, а реализация одновременно двух диагнозов невозможна.

Следует обратить внимание на то, что знаменатель формулы Байеса для всех диагнозов одинаков. Это позволяет сначала определить вероятности совместного появления i-го диагноза и данной реализации комплекса признаков

и затем апостериорную вероятность диагноза

Для определения вероятности диагнозов по методу Байеса необходимо составить диагностическую матрицу (табл. 1), которая формируется на основе предварительного статистического материала. В этой таблице содержатся вероятности разрядов признаков при различных диагнозах.

Таблица 1

Если признаки двухразрядные (простые признаки «да – нет»), то в таблице достаточно указать вероятность появления признака P(k j / D i).

Вероятность отсутствия признака P (k j / D i ) = 1 − P (k j / D i ) .

Однако более удобно использовать единообразную форму, полагая, например, для двухразрядного признака P (kj /D ) = P (kj 1/D ) ; P (k j /D ) = P (kj 2/D ).

Отметим, что ∑P (k js / D i ) =1 , где m j – число разрядов признака k j .

Сумма вероятностей всех возможных реализаций признака равна единице.

В диагностическую матрицу включены априорные вероятности диагнозов. Процесс обучения в методе Байеса состоит в формировании диагностической матрицы. Важно предусмотреть возможность уточнения таблицы в процессе диагностики. Для этого в памяти ЭВМ следует хранить не только значения P(k js / D i), но и следующие величины: N – общее число объектов, использованных для составления диагностической матрицы; N i - число объектов с диагнозом D i ; N ij – число объектов с диагнозом D i , обследованных по признаку k j . Если поступает новый объект с диагнозом D μ , то проводится корректировка прежних априорных вероятностей диагнозов следующим образом:

Далее вводятся поправки к вероятностям признаков. Пусть у нового объекта с диагнозом D μ выявлен разряд r признака k j . Тогда для дальнейшей диагностики принимаются новые значения вероятности интервалов признака k j при диагнозе D μ:

Условные вероятности признаков при других диагнозах корректировки не требуют.

Практическая часть

1.Изучить методические указания и получить задание.

ПРАКТИЧЕСКАЯ РАБОТА № 4

© 2024 Финансы. Бизнес. Недвижимость. Услуги. Страхование